Kepler-type dynamical symmetries of long-range monopole interactions
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A general framework for understanding Kepler-type dynamical symmetries is presented. The
main concern is the geodesic motion in Euclidean Taub-NUT space, which approximates the
scattering of self-dual monopoles for long distances. Other examples include a test particle
moving in the asymptotic field of a self-dual monopole and two other related metrics.

1. INTRODUCTION

In this paper we present a general method for under-
standing Kepler-type dynamical symmetries. Our main in-
terest lies in explaining those symmetries found recently in
the long-distance limit of monopole-monopole scatter-
ing,'™* as well as for a test particle in the asymptotic field of a
self-dual monopole.’

In the long-distance limit, the relative motion of two
monopoles is approximately described in fact by the geode-
sics of the Euclidean Taub-NUT space of parameter
m = — }, with the line element

ds* = (1 + 4m/r)(dP + P(d6? + sin® 8 dg?))

+ [(4m)*/(1 + 4m/r)1(dY +cos 8d6)2.  (1.1)

For m>0, (1.1) is just (the space part of) the line ele-
ment of the celebrated Kaluza—Klein monopole of Gross
and Perry and Sorkin.® The problem of geodesic motion in
this metric therefore has its own interest independent of
monopole scattering. The relativistic aspects of such metrics
have been studied recently by Gibbons and Ruback? in great
detail. Here we explore instead the relation to dynamical
symmetries.

In the Taub-NUT limit the electric charge ¢ (the
Ncether quantity conjugate to d /dy) is conserved and, for a
fixed ¢, symplectic reduction’ leads to the three-dimensional
Hamiltonian

h=4p*/ (1 +4m/r) + (1 4+ 4m/r)(¢/4m)?), (1.2)

where p = (1 4 4m/r)v = 3£/dv — gA, where A is a Dirac
monopole vector potential. The fundamental Poisson brack-
ets {p,.p;} = —qe; (F/P), {r,p;} =6, correspond to
the symplectic form

Q =drAdp + (¢/2P)€, ;. ¥ dr Adr* (1.3)

on the phase space, according to {f,g} =Q(X.X,),
df = Q(X,,").

The second system we study here is a spinless test particle
moving outside the core of a self-dual monopole. The Higgs
field ¢ can be identified with the extra space component of a
pure Yang-Mills field in four dimensions. The equations of
motion can be obtained from the Kerner-Wong® equations
in 1 + 4 dimensions by dimensional reduction.® For large
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distances, the only surviving gauge field component is the
one parallel to . The particle’s isospin projects into the
conserved electric charge ¢.° This leaves us with an effective
Dirac monopole and a long-range scalar field &~ 1-1/r.
Our particle is described by the same symplectic structure as
in (1.3) and the Hamiltonian

h=4(p* +¢*(1 - 1/r]?), (1.4)

where p is the ordinary momentum. This system was studied
previously by McIntosh and Cisneros and Zwanziger' be-
cause of its remarkable symmetries, but without its present
physical interpretation. Such a role has been hinted at by
Schénfeld.!! See, also, Refs. 5 and 12.

For both systems, the clue of the solutions is provided by
a conserved Runge-Lenz-type vector, which allows one?> to
prove that the trajectories are conic sections. We shall main-
ly consider the bound motions. We mainly concentrate on
the more recent and less explored Taub—-NUT problem.

Observing that the conserved angular momentum vec-
tor j and the rescaled Runge-Lenz vector k [ (2.8) ] form an
0(4) algebra for the bound motions and an 0(3,1) algebra
for the scattered motions, the Pauli method"? allows one to
recover the bound-state spectrum and the Zwanziger meth-
od'? allows one to derive the § matrix.?

The 0(4)/0(3,1) symmetry can be extended into
0(4,2). For example,® application of the so-called “Kus-
taanheimo-Stiefel”’* transformation carries the Taub-
NUT system into a harmonic oscillator. The latter admits an
sp(8, R) dynamical symmetry; those transformations that
preserve the charge constraint form an su(2,2) ~0(4,2).

In Barut’s method' (for the Taub-NUT system, for
example®), one starts i{lstead with the time-independent
Schrodinger equation AY = eW. Assuming that e <g?/
32m?, one multiplies the Schrodinger equation by (7 + 4m)
and redefines position and momenta as

R=(q/4m)* —2er, P =p/\(g/4m)* — 2e.

After rearrangement, the Schrodinger equation takes the
form

{iR(P* + 1) + ¢°/2R}Y

(1.5)

= (4m[e — (¢/4m)?1/(g/4m)* — 2¢)V¥. (1.6)
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On the lhs of (1.6) one recognizes Iy, the generator of an
0(2,1) group, to which one can add*'* 14 more operators, cf.
(3.11 a~g) which generate an 0(4,2) operator algebra inde-
pendent of the energy constraint. Therefore, the solution of
the eigenvalue equation (1.6) can be deduced from the spec-
trum of T',. The same procedure works in the other cases.'

The method we present here consists in completing f:(r,
p) — (R,P) into a canonical transformation. We do this by
unfolding the system into Souriau’s'®“espace d’évolution”
(evolution space) & = M XR, which is endowed with the
presymplectic structure o= Q + dhAdt. [§ can also be
viewed as the seven-dimensional “energy surface” lying in
the eight-dimensional extended phase space T*(R>XR)"".]
The classical motions are the characteristic curves of o. This
is basically a generalized variational formalism’S: If @ is a
potential for o, d0 = — o, then the classical action is
SE=1(0.

The quotient (#",w) of (& ,0) by the characteristic foli-
ation of ¢ is Souriau’s “espace des mouvements” (space of
motions).'6 In this framework, a symmetry is a transforma-
tion of & which preserves ¢ and thus permutes the classical
motions: it projects into a symplectomorphism of (A4, ).

The information on the global structure is encoded into
the topology of 4", A fixed ¢ = ¢, section N, of the evolution
space is the “phase space at £,”'%; the restriction of o' to N, is
symplectic. The mapping N,—.#" (obtained by composing
with the projection & —.4") is injective and symplectic, but
may not be onto. In the Kepler problem, for example, the
phase space N, does not intersect those motions that hit the
center at ¢ = t,.'"® Therefore, N, may not reflect the global
structure of the space of motions.

The situation is similar for the Taub-NUT system. The
metric (1.1) is singular for r = 4}m|, which should be ex-
cluded. The energy is positive for 7> 4|m| and negative for
r < 4|m| and, by energy conservation, no motion can cross
the singular sphere S = {r =4|m|}. Hence the space of
bound motions has two connected components. The nega-
tive-energy part & _ of the Taub-NUT evolution space &
contains the tightly-bound motions (.#"_) and the positive-
energy part &  contains the lightly-bound motions (A" ,).
For us, & . is more interesting since the Taub—-NUT approx-
imation is justified only for large .

In both components, the radial motions leave their re-
gions and hit the singularity. In other words, for m <0 the
Taub-NUT space is not a complete Riemann manifold.
Consequently, the spaces of motions.#", = & , /Ker oare
not Hausdorff.

A regular system is one whose presymplectic form de-
fines a foliation with one-dimensional, infinite curves: Its
space of motions is a Hausdorff manifold. Regularizing the
Taub-NUT problem requires imbedding it into a regular
“unphysical” one by an injective, symplectic mapping f
whose image is a dense, open subset. Those “unphysical”
motions, that correspond to the Taub-NUT motions that
leave the evolution space can be made infinite by restoring
their points not in Im f. Identifying the preimages in the
Taub-NUT space of motions, we obtain a smooth Hausdorff
manifold, namely the “unphysical” motion space.

We choose the following regular “unphysical” system
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(A, 2,): We consider in fact those zero-mass, helicity-s,
coadjoint orbits (M,,m,) associated with the action of
SU(2,2) on twistor space.'®?! The su(2,2) =~o0(4,2) genera-
tors are the classical counterparts of those operators in Refs.
4, 15, 21, and 22. Choosing the generator I', [(3.12a)] as
Hamiltonian and adding a “fake time” T, we obtain an “un-
physical” evolution space .#,= M, xR endowed with
3, =@, + dHAdT. The 0(4,2) generators are extended to
4, s0 as to remain constant along the trajectories. The
space of “unphysical” motions, .4 ,/Ker X, is globally sym-
plectomorphic to the T = 0 phase space which is (M,,®,).
This system has a manifest C', (3,1) =~SU(2,2)/(center)
symmetry.

To summarize, our canonical transformation f allows
us to regularize the “physical” problem as well as exhibit its
“hidden” conformal symmetry. Our method is particularly
useful in discussing global problems.

This transformation is found by completing (1.5) with
the rule of transforming the time,

T = [J(¢/4m)* =2k /4mh ]

X{ —p'r—((g/4m)? — 2h)t}. (1.7)

Equation (1.7) is chosen to compensate for the noninvar-
iance of dr A dp under (1.5), due to the energy being a func-
tion rather than a constant. The pullback of the “unphysi-
cal” presymplectic form is the Taub-NUT presymplectic
form. (The Lagrangians differ by a total derivative.) °

The regularized lightly-bound Taub-NUT motion
spaces .4, are thus shown to be symplectomorphic to
(M,,,). The same is true for the tightly-bound motions
A .. Therefore, both carry a C'', (3,1) conformal symme-
try.

In the McIntosh—Cisneros (MIC)-Zwanziger case no
regularization is necessary and M, is thus also the space of
bound test-particle motions in the asymptotic monopole
field. (M, is the space of regularized motions of the Kepler
problem.”! Our method also yields the C', (3,1) symme-
try. 12

The space of twistors can also be viewed as the phase
space of a four-dimensional harmonic oscillator from which
the “unphysical” system is obtained by reduction.?!%?

In Sec. V we study the scattered motions. We show that
the space of regularized hyperbolic motions is symplecto-
morphic to the orbit (M,, &) and hence carries (unlike in
the Kepler case'®) an action of the conformal group.

We end this paper by a short discussion of two other
(closely related) metrics whose geodesics are also 0(4,2)
symmetric. The first metric (which is new) can be viewed as
a curved-space model for a particle in a self-dual monopole
field and the other has been found recently in describing
some special motions of a closed string in the Taub-NUT
background.

Applied to the Kepler problem, our method would yield
an imbedding into M, which is the standard regulariza-
tion,"*'®23 since My=T *(8%) = T*(S)\ (zero section).
The conformal symmetry is obtained for free.
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Il. CLASSICAL MOTIONS IN TAUB-NUT

Neglecting radiation, the motion of two self-dual mono-
poles is approximately described by the geodesics in the
space of solutions of the Bogomolny equation, called the
moduli space.! The moduli space is the product of R>XS!,
the manifold of the center-of-mass motion, with a curved
four-manifold whose metric was found by Atiyah and Hit-
chin.! The latter describes the relative motion of the mono-
poles. In the long-distance limit exponential terms can be
neglected and we obtain a Euclidean Taub-NUT space of
parameter m = — }, with the line element (1.1). The geo-
desic motion of a spinless particle of unit mass in (1.1) is
described by the Lagrangian

£=1g,%%x" =}((1 + 4m/r)v*

+ [(4m)?/(1 + 4m/r)1( + cos 68)?),
2.1

where v =rf. Here r>0 and the angles 6, ¢, ¥ (0<0<m,
0<¢ < 2w, 0< ¥ < 47) parametrize S*. The points r = 4|m]|,
where the metric (1.1) is singular, are excluded. The con-
served Noether quantity

g = (4m)*[ (¥ + cos 68)/(1 + 4m/r)] (2.2)

associated to the cyclic variable ¢ is the relative electric
charge. From now on we choose and fix a nonzero value for
g. It is convenient to introduce the “mechanical momen-
tum” p = (1 4+ 4m/r)v. The equation of motion is then

dp v r vXr
— = —-2m—r4+-———qg—=— 23
7 Rl hl (2.3)

We have the following conserved quantities. First, the ener-
gy,

e=1(1+4m/r)[vV* + (¢/4m)?], 2.4)
and next the monopole angular momentum

i=rXp+q(r/n). (2.5)
Finally, we have the Runge-Lenz-type vector

a=pXj -—E(4m(e— (g/4m)?). (2.6)

Hence the trajectories lie simultaneously on the cone
Jr/r = g and also in the plane perpendicular to

n=ga+ 4m[e — (¢/4m)?]j, 2.7

because of the relation n'r = ¢( /* — ¢*). They are thus conic
sections. !

For energies smaller than (g/4m)?/2 (which is only
possible for m <0) the motions are bound. We assume
henceforth that m <0.

Under the Poisson bracket and for e < (g/4m)?/2, the
angular momentum j closes, with the rescaled Runge-Lenz
vector

k= =
[(g/4m)* — 2e|
_ DX — (1/r) (4rle — (g/4m)Y) (2.8)
[(g/4m)* — 2e|

into an o(4) dynamical symmetry algebra. For
e> (g/4m)*/2 we instead obtain an o0(3,1) algebra.’
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Via (2.4), the sign of the energy depends on r being
smaller or larger than 4|m|. The excluded points form a sin-
gular sphere

S = {reR®|r = 4|m|}, 2.9

which divides the space into two regions. Energy conserva-
tion implies that a particle cannot go from one region into
the other (although it can hit the boundary S, see below). If
a finite-energy motion approaches S, its velocity |v| goes, via
(2.4), to infinity as (1 — 4|m|/r) —1/2, jts momentum p
hence goes to zero as (1 — 4|m|/r)!/2 Those motions in the
interior of S have negative energy; they are the tightly-bound
motions.//"_. Those motions in the exterior and having ener-
gy 0 <e <¢*/32m? are the lightly bound motions ¥ ... We
shall focus our attention on .4/, .

In the generic case the orbital angular momentum rxXp
is nonzero, and the cone has opening angle a(cos a = |g|/
13])- Such motions avoid S. Indeed, we see from (2.5) that
for nonvanishing orbital angular momentum, j cannot be
radial. However, when hitting the singular sphere S, the or-
bital part necessarily vanishes requiring j to be radial.

Consider now the radial motions. Fixing a direction, we
work with 7, p. If the initial velocity is inward, the particle
reaches the singularity in finite time, and leaves the “phys-
ical” space. If the velocity is outward (but sufficiently low as
to remain bound),

v =((2e — (¢/4m)")r + ¢/4|m[)/(r + 4m) (2.10)

shows that there will be a unique turning point r, > 0 where v
vanishes, namely at

ri = 4|m|{(g/4m)*/[(g/4m)* — 2]} > 4|m|. (2.11)

After reaching ,, the particle returns and falls inward until
it disappears in S. At this very moment, another radial mo-
tion leaves the singularity and follows the same phase-space
trajectory backward. When passing to the quotient, any two
neighborhoods of these two motions intersect. In order to
obtain a Hausdorff topology, such motions should—and
will—be identified. All motions then become periodic.
The set of outer turning points of radial motions is

B°XR ={(r,p,0)| |r| > 4|m|,p =0} (2.12)
and the set of inner turning points is
S XR = {(r,p,0)| |r| = 4|m|,p = 0}. (2.13)

The situation is basically the same for the tightly-bound
motions. The nonradial motions are ellipses which avoid the
origin as well as S. A radial motion has an internal turning
point at 0 <r, < 4|m|, according to (2.11). All radial mo-
tions fall into S in finite time from the inside, with infinite
velocity and zero momentum: Such a motion should be iden-
tified with the motion that leaves S in the opposite direction
along the same trajectory.

1Il. SOME MANIFESTLY 0(4,2)-SYMMETRIC SYSTEMS

A twistor'®?° can be represented by a pair of spinors

Z°= (w7 ) inT = (C2XC?)\{0}. (Here 7. plays the
role of a generalized coordinate and w* plays that of a gener-
alized momentum.) The conjugate of Z“(a =0,1,2,3) is
Z* =(m*%, (0*)') = ((7,)* (&@")*) (the asterisk means
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complex conjugate). The space of twistors is endowed with a
Hermitian quadratic form of signature (2,2) given by

Z°Z* =o'n% + 7 (0*)4, A=0,1;4'=0,1". (3.1)
To each real number s we associate a (real) seven-dimen-
sional manifold T,, namely the level surface

Q(ZZ%) =}Z°Z% =s. (3.2)

Here T carries the (by construction) U(2,2) invariant one-
form

0= — (i/2)(Z°dZ* —Z*dZ") (3.3)
whose exterior derivative
—~d0=idZ“NdZ% (3.4)

is a symplectic form on T. The Poisson brackets are thus
{Z=,Z23} = — i53. The restriction @, of ( — d6) to the lev-
el surface T defines a one-dimensional integrable foliation
and @, descends to M., the quotient of T, by the characteris-
tic foliation of @, . In this way M, becomes a six-dimensional
symplectic manifold. Explicitly, the characteristic curves of
@, (the Hamiltonian flow of Q) are circles,

Z%—e™ ip/2za’ Z: —»eip’zZ:, 0(/)(477',

which identifies M, as T ,/U(1). ,

The unitary group U(2,2) leaves invariant the quadrat-
icform (3.1) and thus, also, the level surfaces T,. The action
of U(2,2) on T, is clearly transitive. The action of the diag-
onal U(1) subgroup of U(2,2) on T, coincides with the flow
(3.5). Therefore, it is only SU(2,2) that acts on the quotient.
In this way we obtain a transitive, symplectic action of
SU(2,2) on (M,,®,). Souriauw’s moment map'® therefore
identifies (M,, @,) with a coadjoint orbit of SU(2,2), en-
dowed with its canonical symplectic structure. M, can also
be viewed as a U(2,2) coadjoint orbit, where s is an element
in the center of the Lie algebra.

For s7#0 the Poincaré subgroup of SU(2,2) already acts
transitively, so that M, is actually sumplectomorphic to the
Poincaré orbit (2, . ), the space of motions of a relativis-
tic, zero-mass, helicity-s, elementary particle. 7

For s = 0 the action of the Poincaré subgroup on M, is
no longer transitive and M, is rather the space of motions of a
helicity-zero, mass-zero particle in compactified Minkowski
space S' X 8. M, is obtained from the zero-mass Poincaré
orbit (2, , ) by adding those motions that lie along the
generators of the light cone at infinity.

As will be clear from the parametrization below, all
zero-mass Poincaré orbits are diffeomorphic to
R (R3\{0}). This is thus the topology of M, for s#0. The
topology of M, is, in turn, $> X (R*\ {0}). Indeed,

RH =0y iy,

3.5)

(3.6)

where the o, are the Pauli matrices, determines, for any 7,
€C?\ {0}, a unique future-pointing light-like vector (R*)

= (R,R) (R = |R|) in Minkowski space. Conversely, those
s that solve Eq. (3.6) for a given R belong to a circle. This
is clear from the following:

cos (8/2)e ¥+ 92
Tar = m( sin(8/2)e’ —v+972 )
The vector R has the polar coordinates R, 8, ¢. The map

3.7
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7, — R is thus essentially the projection of the Hopf fibering
§° - 8% its (multivalued) inverse is the Kustaanheimo-Stie-
fel'* transformation.

Choosing 7. to a pair (P,R) in R*>X (R*\ {0}) we can
associate a twistor Z ® = (w*, 7,.) by setting

o' = i{P*0, " — i(s/R)oy™ Y. (3.8)

For any choice of 7. (i.e., of the phase ) Z “ belongs to T,
and the whole of T, is obtained. Thus the pairs (P,R) para-
metrize those circles in Eq. (3.5) and thus the quotient
manifold M.

For s=0, To=TUT?, (T3NT?, =0), where T}
= {(&*, 7. )eT,|m,. #0} and T = {(&*, 7, )|@" #0,
. = 0}. The complex projective lines in PT meeting PT,
corresponds to points at infinity in (compactified and com-
plexified) Minkowski space. Therefore, the orbit M, is de-
composed as

Mo=ﬁ0,0,+ UM(:o’
M° =T° /U(1).

ﬁo,o, + = Tg/U(l)’
(3.9)

As anticipated by the notation, &, , is a zero-mass, zero-
helicity Poincaré orbit because the Poincaré subgroup of
SU(2,2), leaves the constraint 7. #0 invariant. Here M %,
describes those motions that lie along the generators of the
light cone at infinity. The decomposition (3.9) also shows
that M, is symplectomorphic to T *$?, the cotangent bundle
of the three-sphere with its zero section deleted. Indeed, R3is
(by stereographic projection) S* without its north pole; the
Poincaré orbit 7, , is RPX(R*\{0}) =T+ (S\{¥N})
and M° =T 3 (S?).

The action of su(2,2) ~0(2,4) on T is generated by the
matrices

ik = —¥Yxe» KL=0,..3;5,6). (3.10)
[Our convention for the metric on R>* is g, = diag(g,,,
8ss» 8es) = (+1,—1,— 1, — 15— 1, 4+ 1).] The matrices
in (3.10) leave invariant the quadratic form (3.1) and the
symplectic form (3.4). The components of the moment map
are Jy;, = Z*(yx.)3Z%. In dynamical group notations,'®
on each orbit we have the 15 generators

Jos—To = R{(P?> + 1)/2] + s*/2R,

ieijk-]_‘,'k “’J = RXP + S(R/R),
P21

(3.11a)
(3.11b)
R
2R?
(3.11c)

J,-K=R ——P(R-P)—%J+s2
=PXJ — (R/R)T,
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P24+1 s R
Je—-»U=R —~P(RP)—=—J+¢
¢ 2 RP) -2 T+ 2R?
=PxJ- (R/R)T,, (3.11d)
Js¢—»D= —RP, (3.11e)
Jo-V= —RP, (3.11f)
P18
Jso— T4 =R —_ 3.11
so— 14 2 2R ( g)

In particular, 'y, T'y, and D generate an 0(2,1) subalgebra;
those generators that commute with T, are J and K, which
form an o(4) subalgebra—the “invariance algebra” of the
Hamiltonian I'y. The remaining 0(4,2) generators are some-
times called “noninvariance” generators.

From (3.11) we see that

R=U—-K, P= —V/R; (3.12)
thus from the 0(2,4) relations {Jx. Jyn} = gxndim
+ 8rmIxn — 8xmIxr — 8inIxy We derive the symplectic
forma, of 7, . :

@, =dR,\NdP, + (s/2R*)e;, R ' dR’NdR*.  (3.13)

Now we construct a classical dynamical system which
has a manifest SU(2,2) symmetry. Consider, in fact, the evo-
lution space

M, =M xXR={RP,T}, I, =am +dHACT,
(3.14)

where @ is the symplectic form of the orbit M, and the
Hamiltonian is

HR,P) =T((R,P). (3.15)

Let us extend the 15 generators of 0(4,2) in (3.11) to
A , such that they remain conserved along the trajectories:

H-=H=T,, (3.16a)
J-=1J, (3.16b)
K~ =K, (3.16¢)
U;=U,cosT+V,sinT, a=1,2,3,5, (3.16d)

Vi=—-U,sinT +V,cos T, a=123,5, (3.16e)

where we have introduced the “Bacry-Gyorgyi”** four-vec-
tors (U,) = (U,D) and (V,) = (V,T,).

Combining (3.12) with (3.16) yields an explicit inte-
gration of the equations of motion:

R(TY=U~cos T—V~sinT—K,
P(T)= — (U sinT 4+ V~cos T)/R(T). (3.17)

Equations (3.17) show that the orbits are ellipses, with peri-
od AT = 27. The Runge-Lenz vector K points from the ori-
gin into the center of the ellipse. The orbit is the intersection
of the cone R-J = s, with the plane normal to the vector

N= —U-XV~ =sK+T,J. (3.18)

The quotient of (.#,, X,) by the characteristic foliation of
2, is the space of “unphysical” motions. Since every motion
is infinite and depends regularly on the initial conditions,
this quotient is globally symplectomorphic to the T = O phase
space, which is the SU(2,2) orbit (M,,m,). The projection
m M ;— M, maps a point (R, Py, T,) into the pointat 7= 0
on the unique classical motion through (R, P, 7).
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The group SU(2,2) acts on .4, = M, X R by acting on
the first factor alone, without changing 7. The center of
SU(2,2) acts on the coadjoint orbit M, trivially. Therefore,
the Lie algebra action(3.16) integrates into a global sym-
plectic action of the adjoint group of SU(2,2), which is the
conformal group C', (3,1).

Notice that the “unphysical” energy function H = T,
satisfies H>|s| and equality is only achieved for
R = |R| = |s| and P = 0. A particle with the initial condi-
tions |R(0)| = |s|, P(0) = Ois in equilibrium.

Let us consider a motion with the initial conditions
R(O0)=R,, P(0)=0 at T=0. Since now
U™ = (Ry/R))T47, V- =0, — K~ = (Ry/R,)T" the mo-
tion oscillates on a line segment between the turning points
Iy + I'; according to (3.17):

R(T) = (Ry/Ry)(I'y —T'; cos T, ,
(3.19)

P(T) = — [U/|R(D)|]sin T.

Notice that
IXR ={0<R<|s|, P=0,T}, resp.,
EXR={R>|s,P=0,T} (3.20)

are the sets of the inner, resp., outer turning points.

IV. REGULARIZATION

The classical flow of the Taub—-NUT evolution space is
not complete: The radial motions leave it. Simply adding
S X R would not solve the problem since from the points of
S XR infinitely many motions start, all with zero momen-
tum. Therefore, we regularize by relating the Taub-NUT
problem to the regular “unphysical” dynamical system of
Sec. III. Let us first study the lightly bound case.

Our guiding principle is that the “hidden” 0(4) symme-
try generators j and k of Taub-NUT should go into the
manifest 0(4) symmetry generators J and K of the “un-
physical” problem. This is achieved by setting s = ¢ (#0)
and defining f(r,p,?) = (R,P,T), where

R=(¢/4m)* —2hr, P =p/J(¢/4m)*=2h,
T = [V(¢/4m)* =2k /4mh ]

X (—pr —((g/4m)> — 2h)), (4.1)
and /4 is the Taub~-NUT Hamiltonian (1.2). The first two of
Egs. (4.1) ensure that fintertwines the 0(4) generators and
the last makes f canonical:

[*2, =f*(@, +dHAdT) = Q 4+ dh Adt = o,
4.2)

where
H=14m{[h — (¢/4m)*1/(q/4m)* — 2k }. (4.3)

Expressing through the new variables R and P shows that H
is the generator I'yin (3.11a), which we have chosen for the
“unphysical” Hamiltonian.

Now fi(r,p,t)— (R,P,7) maps the positive-energy
Taub-NUT evolution space & _ into the “unphysical” evo-
lution space #,=M,XR. The formal inverses are
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(rap9t) =f_l(R,P,T), Wlth
2 p=H T ~7p

r=4|m| ) ’
HFE =% 4]m]
2
o )
HFJH*— HZITJH”—
(4.4)
where ¢ = s and the energy transforms according to
h=[VH*=5/(4m)*}(+t H—JH*=§). (4.5)

In order to obtain a positive sign for 4, we have to choose the
upper signs.

Clearly, f cannot be a symplectomorphism because
(% ,.,0) is not complete, while (#, 3,) is complete. In
fact, f=f|& . isnot onto—but this is what we need. Denote
M\ = by M?, where 2 is given in (3.20).

Proposition: Consider the dense, open subset
M° = (M,\Z) X R of the unphysical evolution space. Then
(1) £(F ,,0) - (A2, 3,) is a (pre)symplectic bijection and
(ii) the inverse (4.4) extends naturally into a continuous
mapping 4 ;- & U (S XR). Here f ! carries the whole
3 X R into the singularity S X R.

Proof: Since f'preserves directions, it is sufficient to work
with the absolute values r=|r|, p=|p|, R=|R|, and
P = |P|. Also, since T depended on ¢ linearly, we can—and
will—drop the time variables when studying the global
properties of f.

We first show that Im £ does not contain those points
{0 <R<|q|,P =0}, i.e., the subset = C M,. Indeed, P = Ore-
quires p = 0. Then, by (4.1), R = |q|(+/4|m|)"/*> |g| since
r>4|m)|. Thus Im fC .#°. In order to prove that Im f fills
4", it is convenient to introduce some more points (cf. Fig.
1):

A'=(r=w,p=0),
C=R=0,P= ),
and we set B®={(r>4|m|, p =0} [cf. (2.11)] and B’

={(rp(r))}, where p(r) = (|q|/V4|m|)1/r + 4m/r.
Here B belongsto & _ ,but B ' does not. As we have seen, the
interior points of the region whose boundary is

A=(R=w,P=O),

Toub - NUT c unphysical

o 4
>

r=dimt ° r L Rz[sl

FIG. 1. The canonical transformation fin (4.1) takes the lightly-bound
Taub-NUT evolution space & , symplectically onto .#° = (M, \XZ) XR.
The image of the entire = X R by the inverse £ ~' is the singularity S XR.
Similarly, the tightly-bound evolution space & _ is carried into
(M \E)XR and now f~'(EXR) =S XR. The unbound part %, is
symplectomorphic to the full .. Only the absolute values are shown and
the time variables are dropped.
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{S}U{4'}UB" are carried by finto .#° and f(4') =4
ABY =E,fABH)=C.

Let a be an arbitrary non-negative number and let us
consider the hyperbolas #”, = {r'p =a} and #, = {R-P
= a}. The Taub-NUT evolution space is clearly the bound-
ary B ° plus the union of its intersections with the hyperbolas
. In turn, #° is = plus the union of the hyperbolas #.
Each hyperbola intersects the “upper boundary” B ! at exact-
ly one point, which is sent into C. Furthermore, the hyperbo-
la 77, is carried into 7, since R-P = r-p. It follows that
A NE ) = ,. Adding the bottom line B ® whose im-
age is =, we conclude that the image of fis the entire .#°.

Finally, fis injective: A point (R,P) in E is the image of
(r=4|m|(R /5)? p=0) from B otherwise it lies on a
unique hyperbola 7#°, and thus has a unique preimage in
", N& . This proves (i) of the proposition.

To prove (ii) of the proposition, observe that (4.4) is
naturally defined for any point of .#". However, for a point in
SXR, H=R /2 +5*/2R, so that H— (H*—s*)"*=R
since R /2 — s*/2R is negative for R<|s|. From (4.4) we in-
fer that

STHEXR) = (4|m|,0,R),

whichisin theboundary § XR = {r = 4|m|,p = 0} X Rand
doesnotbelongto & | . The extension f ~'is clearly many-to-
one. Q.ED.

Regularizing Im fC.# _ is trivial: It is sufficient to add
those turning points that we have excluded, i.e., ZXR [cf.
(3.20)]. For Taub—NUT this amounts to gluing together
the branches of the radial motions. When passing to the
space of motions, this means identifying those points that
thus far represent different (not infinite) motions and whose
neighborhoods are not separated. This procedure yields a
smooth, Hausdorff topology, namely that of M,. To summa-
rize, we present the following theorem.

Theorem: The map f: (%, ,0)— (#,, Z,) regularizes
the Taub—NUT problem: It intertwines the time-indepen-
dent o(4) symmetries. Here (/" , @), the space of regular-
ized lightly-bound Taub—-NUT motions, is symplectomor-
phic to the SU(2,2) orbit (M,,&,) and hence carries a
symplectic action of the conformal group C', (3,1).

The results in Sec. II are consequences of what we have
found in Sec. I1I and the properties of the canonical transfor-
mation /. For example, it follows from (4.1) and (3.17) that
the trajectories are ellipses in the plane perpendicular to the
vector n in (2.7),

n = gk + 4m{[e — (¢/4m)21/J(784m)? — 2¢}i, (4.6)

which is (up to normalization) the image of N in (3.18).

The pullbacks of the 15 generators in (3.16) by fyield
0(4,) symmetry generators of the Taub—NUT system: They
coincide with the classical counterparts of the quantum op-
erators written in Ref. 4. Without regularization, this would
only yield an 0(4,2) algebra.

The period of a Taub~-NUT motion could be obtained as
the image under fof the “unphysical” period 2. This would
yield a “generalized third Kepler law.”

Essentially the same argument works for the tightly
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bound motions. The restriction of f to E _ is injective, but not
onto: The inverse (4.4) (with the lower sign now) maps the
E*XR={"R>|s|, P=0, TeR} into S XR, again in a
many-to-one manner. The space of regularized negative-en-
ergy motions is thus once more the orbit M, and therefore
carries a symplectic action of the conformal group
C' (31).

Let us now consider the MIC-Zwanziger system (1.3)
and (1.4). In the bound motion region 0 < e < ¢°/2 we apply
the transformation similar to the one used in the Kepler
problem,'” namely

R= Va —2h(l';l)), P=p/\JE —Zh(]',p),
(4.7)
T= [V@ —2h(r.0) /¢°1 ((¢* — 2h(r,p))t + P).

The transformation (4.7) maps the MIC-Zwanziger
system into the “unphysical” one and the pullback by (4.7)
of the “unphysical” presymplectic form X, is ) + dhAdt,
where h is the Hamiltonian (1.4). Therefore, Eqs. (4.7) are
canonical. The energy transforms as

H=q/¢& —2h. 4.8)
Since g0 by assumption, (4.7) can be inverted:

ro=[H(R,P))/q"1R,, P,=[¢*/H(R,P)]P,

t= (H(R,P,))/q)*[H(R,P,)T—R,P,]. 4.9)

No regularization is needed in this case because the “MIC-
Zwanziger” system is itself regular: No motion reaches the
center. This is clear from r = (H/|q|) (R /|q|) >R /|q].

The point r = 1, p = 0 (the image of R = |s|, P=0) is
now a regular equilibrium point. It is just where V(r)

= ¢*(1 — 1/r)? takes its minimum. It has no physical role,
however, because the “MIC-Zwanziger” approximation to
test particle motion in a self-dual monopole field already
breaks down for much larger distances.

We conclude that for the MIC-Zwanziger system, (4.7)
is a global symplectomorphism. The interpretation of the
symmetry generators is analogous: For example, K corre-
sponds to the rescaled Runge-Lenz vector

k= (1//@ = 2h)(pXj — ¢ (r/1r)), (4.10)

etc. The trajectories are ellipses in the plane perpendicular to

n = gk + (¢°/\g> — 2h)j. (4.11)

This proves the C' _(3,1) dynamical symmetry for the
MIC-Zwanziger system, with generators givenin (3.11), cf.
Refs. 12 and 15. As a secondary result, we also obtain the
equivalence between the regularized Taub-NUT and MIC-
Zwanziger systems, cf. Ref. 25.

V. UNBOUND MOTIONS

Now we give a brief account of the unbound motions.
We start with another “unphysical” system described by .#',
=M, XR and o, = @, + dHAdT [thus far identical to
(3.15)], but instead choose the Hamiltonian

H=T,=}{R(P*>—1) +5/R}. (5.1)
All motions of this system are infinite and thus the space
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of motions .# . /Ker o, is globally symplectomorphic to the
T = 0 phase space, which is again (M,,&.).

The generators (3.11) of the action of the conformal
group are extended into .#; as

r4' =T, (5.2a)
J =3, (5.2b)
U =, (5.2¢)
K =KchT+VshT, (5.2d)
D =DchT+T,shT, (5.2e)
V =KshT+VchT, (5.20)
I'g=DshT+T,chT. (5.2g)

Combing with (3.12) we deduce that the trajectories are
R(T) =U(T) —K(T)
=U—-K chT+V shT, (5.3)

which are hyperbolas with the center at U and perpendicular
to

N=K XV =sK+T,J. (5.4)

For the initial condition R(0) =Ry, (0<|Ry| < ),
P(0) = 0, we obtain a semi-infinite radial motion

R(T) = (Ry/R)(T'5ch T—T7Y),

P(T) =(&) ! thT,
R/ 1—(T;/T3)(1/ch T)

whose (unique) turning point is at R(0) = R,. The set of
turning points is

AXR = {(RP,T)|0<R < 0,P =0} (5.6)

Now we turn to the “physical” systems. Let us first as-
sume that we are working with the m <0 Taub-NUT case
and with the energy e> (g/4m)?/2, so that the motions are
hyperbolas. As for the bound case, nonradial motions avoid
the singular sphere S. All radial motions hit S in finite time,
with infinite velocity and zero momentum. Such a motion
should be identified with the one bouncing off at the same
moment along the same phase-space trajectory. An unbound
motion has a single turning point, which lies in .S XR.

Let us now relate these two systems by an appropriately
modified version of (4.1), f(r,p,t) = (R,P,T), with

R =2k — (¢/4m)’r, P =p/\2h — (¢/4m)?,

2h = 2

T= ~N2h — (g/4m)” (pr — (2h — (g/4m))?t). (5.7)
—4mh

Again, (5.7) is canonical and f*(@, + dHAdT) = o for

H=4m[h— (¢/4m)*)/\2h — (¢/4m)* =T,. (5.8)

The same argument as for the bound motions shows that
f is injective, but not surjective: Im( f) = ., \(AXR).
The formal inverse of (5.7) carries AXR into {r =4|m|,
p =0} XR. In this case, the regularization amounts to re-
storing the turning-point set A X R. The space of regularized,
hyperbolic Taub-NUT motions hence becomes globally
symplectomorphic to (M,, &, ). Therefore, it carries an ac-
tion of the conformal group C', (3,1). This is in contrast
with what occurs for the Kepler problem, where the scat-
tered motions only have a Lie algebra symmetry, which does

(5.5)
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TABLE I. Regularization and group action in various cases.

Bound Unbound
Regularization Group action Regularization Group action
m>0 no bound motions no yes
Taub-NUT
m<0 yes yes yes yes
Asymptotic
BPS no yes no no

not integrate into a group action.'® Those generators com-
muting with the Hamiltonian (5.1), namely J and U, form
an 0(3,1) subalgebra. It is now U (rather than K) that goes
into the rescaled Runge—Lenz vector k under £, Thisisnot a
surprise since (5.7) could have been obtained by requiring
(besides canonicity) that the time-independent 0(3,1) alge-
bras go into each other.

The remaining cases are analogous: For m > 0, the origi-
nal Kaluza-Klein monopole situation, the metric is every-
where regular, including at the origin.?® All motions are hy-
perbolic and none reaches the center, but rather has a
turning point [still given by (2.11)]. The transformation
(5.7) yields a global symplectomorphism between the phase
space N, (which is now a global chart of the space of motions
for g#0) and M,. Therefore, we have a global C'_(3,1)
conformal symmetry.

For a test particle in the long-range self-dual back-
ground unbound motions arise for e>¢*/2. No motion
reaches the center and thus no regularization is necessary.
Equation (4.12) (with asign change under the root) is again
an injective symplectic mapping: Its image is, however, only
the positive-energy part H > 0 of .# ;. Therefore, there is only
a Lie algebra action, which does not integrate into a group
action because the group trajectories leave the positive-ener-
gy part. The situation is summarized in Table L.

Vi. OTHER 0(2,4)-SYMMETRIC GEODESICS

Curiously enough, the same type of 0(2,4) symmetry is
encountered for the geodesics of some other metrics. Let us
first consider the metric obtained from the Taub—NUT line
element (1.1) by “rescaling”:

(dy + cos 0dp)?
a—=1/n*

ds* = {dr* + r*(d6? + sin> 0 d¢*) } +
(6.1)

Here d /d¢is a Killing vector, the Kaluza-Klein analog of an
internal symmetry. The associated conserved quantity
g = (1 — 1/r)2(¢ + cos 0¢) is again an electric charge. The
geodesics of (6.1) satisfy

d?r, r; TV r;
5 +4¢ rE

az o p e
where v = and a = ¢°/4m. However, this is exactly the
equation of motion one obtains for a test particle in the
asymptotic field of a self-dual monopole whose electric
charge is g.° Observe that (6.2) is the equation of motion for
the MIC-Zwanziger system (1.3) and (1.4) (with the Cou-
lomb coefficient replaced by a); thus it admitsa C',_ (3,1)

(6.2)
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conformal dynamical symmetry with all its aforementioned
consequences.
The metric (6.1) has the Kaluza-Klein form

_(g,.,.+A,.A,./V A,-/V)
Sw=\" av v )

whereg; = 6, (i,j = 1,2,3) is the flat Euclidean metric, 4, is
a Dirac monopole vector potential, and the “Brans-Dicke”
scalar ¥ = (1 — 1/r)? is the square of the asymptotic Higgs
field of a BPS monopole: It can therefore be considered as a
curved-space model for a test particle in the long-range self-
dual monopole field. The metric (6.1) is singular at r= 1,
yielding a singularity in the definition of the electric charge
q. This is consistent with the behavior of a test particle in the
monopole field. (Both the “MIC-Zwanziger” approxima-
tion and the definition of the electric charge are only valid for
ryl.)

Yet another example was found very recently by Gib-
bons and Ruback,?” who consider a closed string (a “wind-
er”) in a five-dimensional static Kaluza—Klein space-time
8245 [4,B=0,1,2,3,5],

(6.3)

— 8oo
8 +AA/V AV
A,V 17v

(6.4)

84 =

(g0 = 1). The string motion is governed by the Nambu-
Goto action

— det AB%ZL‘! du?,

(6.5)
where u' = o is periodic with period 27 since the string is
closed and #* = 7. Gibbons and Ruback?’ assume that the
string moves entirely in the internal space, winding m times
around the internal circle: More precisely, they assume that
x° = mRy0o,x* = x*(7), where Ry is the radius of the inter-
nal circle at infinity. Substituting this ansatz into (6.5) and
integrating over s reduces the Nambu-Goto action into that
of a relativistic particle with rest mass m = mRy/a":

dx* dx”
o dr dr
where the new metric 4, is k,, = g,,/V. If, in particular,

the original X-K metric is that of a Kaluza-Klein monopole
¥V =1 + R, /2r, the new metric is simply

dt?

mRK

S= — (6.6)

d?= —— =+ dr? 6.7
14+ R./2r (.7
The geodesics correspond to the Hamiltonian
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h=J(p* +>)/V and phase space symplectic structure
dr Adp, where p = u dx/dt. Gibbons and Ruback®’ then
point out that the geodesics of (6.7) lie in the plane perpen-
dicular to the conserved angular momentum j = rXp and
are ellipses, parabolas, or hyperbolas depending on the ener-
gy square ¢* being smaller, equal, or larger than the rest-mass
square > This is explained by the conservation of a
“Runge-Lenz” vector

a=pXj— (r/r){(®R,/4). (6.8)

Furthermore, j and k = a/4 (,u2 —hd) generate a Kegler-
type (in contrast to the “MIC-Zwanziger-type”)
0(4)/0(3,1) dynamical symmetry. The energy levels

& =p2(8n*/u’R%) 1+’ R%/4n — 1)

(n=1,2,...) are n* degenerate.
Our method provides an insight into the above state-
ments. One inverts the energy relation

(6.9)

n=(R,/4) (e/Ju* = &). (6.10)
Define now a transformation (R,P,T) = f(r,p,t):
R=\u"—h%r, P=p/ i’ -7,
[ Z Z 2 2
T—_—i B —h [‘u —h t+r-p]. (6.11)
R, 2u*—h? h
It is easy to see that (6.11) is canonical,

dRAdP + dHAAT = dr Adp + dh Adt,if the new Hamil-
tonian is
H= (R, /4)(h*/Ju* — h?). (6.12)
Substituting A, expressed by R and P, into (6.12), we obtain
H=T,=RP*+ 1), (6.13)

which is the SU(2,2) generator (3.11a) for helicity s =0,
i.e., the Hamiltonian of the geodesic flow on S* expressed in
stereographic coordinates.

We conclude that f in (6.11) is an (injective) symplec-
tic mapping from the “reduced string system” into the mass-
zero helicity-zeroSU(2,2) orbit &y~ T +8° whichis'®'® the
space of regularized motions of the Kepler problem. In this
case R and P are only local coordinates obtained by stereo-
graphic projection. Now f'is not onto; those points not in
Im( /) can be used to regularize the problem along the same
lines as before.

It follows that the geodesics of the metric (6.7) have an
o(4,2) conformal symmetry, with the generators (3.11)
(for s =0).

Vil. CONCLUSION

In this paper we have only studied the classical mechan-
ics. Quantum aspects are found in Refs. 1-4 and could (in
principle) be obtained from implementing the canonical
transformation (4.1) at the quantum level. ‘

The complications arise because of the collisions, which
require regularization. The quantum motions actually be-
have better than the classical ones: Intuitively, the Heisen-
berg uncertainty relations make the collisions irrelevant. Re-
markably, it is for the radial motions that the “Atiyah—
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Hitchin” and “Taub-NUT” motions differ the most.!

The Taub—-NUT approximation is only valid for large
distances, when the exponential terms are small with respect
to those in 7~ . In the “real” (Atiyah—Hitchin) case the
relative electric charge may not be conserved; the trajector-
ies may not stay in a plane, etc."?®* However, numerical as
well as theoretical calculations?® show that the system still
admits bound motions; for large angular momentum the real
spectrum is very close to the one in the Taub-NUT limit.

An isospinor test particle in the long-range field of a
monopole>!! has similar properties. In particular, for large
angular momentum, the “real” bound motions peak far out-
side the monopole core and the spectrum quickly converges
to the “MIC-Zwanziger” one.?

Finally, notice that the evolution space formalism has
been useful in the past in understanding the symmetries of
the Dirac monopole.*
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