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A new formulation of Toda theories is proposed by showing that they can be regarded as 
certain gauged Wess-Zumino-Novikov-Witten (WZNW) models. It is argued that the 
WZNW variables are the proper ones for Toda theory, since all the physically permitted Toda 
solutions are regular when expressed in these variables. A detailed study of classical Toda 
theories and their W-algebras is carried out from this unified WZNW point of view. We con- 
struct a primary field basis for the w-algebra for any group, we obtain a new method for 
calculating the W-algebra and its action on the Toda fields by constructing its Kac-Moody 
implementation, and we analyse the relationship between w-algebras and Casimir algebras. 
The w-algebra of G2 and the Casimir algebras for the classical groups are exhibited 
explicitly. 0 1990 Academic Press, Inc. 

I. INTRODUCTION 

Two dimensional conformally invariant soluble field theories are based on 
various extensions of the chiral Virasoro algebras. The best known extension is the 
Kac-Moody (KM) extension [ 11, whose most prominent Lagrangean realization 
is the Wess-Zumino-Novikov-Witten (WZNW) model [2]. There are various 
indications that the KM algebra may even underlie all the rational conformal 
field theories. For example, the Goddard-Kent-Olive (GKO) construction [3] 
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generates a huge class of rational conformal field theories. Another extension is the 
so-called #‘--extension, which is a polynomial extension of the Virasoro algebra by 
higher spin fields. The study of polynomial extensions of the Virasoro algebra was 
initiated by Zamolodchikov [4]. Later it was realized [S, 63 that a large class of 
polynomial extensions of the Virasoro algebra can be constructed by quantizing the 
second Gelfand-Dickey Poisson bracket structure of Lax operators, used in the 
theory of integrable systems. These w-algebras proved very fruitful in analysing 
conformal field theories and they have become the subject of intense study [S-S]. 
Recently it has been found by Gervais and Bilal that Toda theories provide a 
realization of w-algebras [S, 91. Toda theories are important in the theory of 
integrable systems and include the ubiquitous Liouville theory, which, among other 
things, describes two dimensional induced gravity in the conformal gauge. 

There are a number of results suggesting that Toda theories must be closely 
related to WZNW models. First, in both cases the fields can be recovered from the 
generators of the respective extended Virasoro algebras (KM and w-algebras) by 
means of linear differential equations [S]. Second, the Gelfand-Dickey Poisson 
bracket structure can be obtained by a Hamiltonian reduction from a KM phase 
space [lo]. Finally, it has been shown by Polyakov [ 1 l] that two dimensional 
induced gravity (in the light cone gauge) exhibits (left-moving) SL(2, R) KM 
symmetry. 

In a recent letter [ 121 we have shown that the exact relationship is that Toda 
theories may be regarded as WZNW models (based on maximally non-compact, 
simple real Lie groups) reduced by certain conformally invariant constraints. To be 
more precise, Toda theory can be identified as the constrained WZNW model, 
modulo the left-moving upper triangular and right-moving lower triangular KM 
transformations, which are gauge transformations generated by the constraints. The 
advantages of treating Toda theory as a gauge theory embedded into a WZNW 
model are the following: First, the coordinate singularities of Toda theory disap- 
pear by using the WZNW variables. Second, the w-algebra of Toda theory arises 
immediately as the algebra formed by the gauge invariant polynomials of the con- 
strained KM currents and their derivatives. Third, the general solution of the Toda 
field equations is easily obtained from the very simple WZNW solution. Finally, 
there are natural gauges which facilitate the analysis of the theory. In this paper we 
exploit the embedding of Toda theory into the WZNW model to obtain a number 
of new insights and results about the structure of Toda theory and w-algebra. All 
our considerations are classical. We hope that their quantum generalizations will 
provide new constructions of quantum Toda theories [13] and #‘“-algebras. 

We first set up a Lagrangean framework for the WZNW-Toda reduction, namely 
we establish that Toda theories can be identified as the gauge invariant content of 
certain gauged WZNW models. Our gauged WZNW models differ from the usual 
gauged WZNW models [ 143 used in the path integral realization of the GKO con- 
struction not only in the non-compactness of our groups, but also in that instead 
of a single diagonal subgroup we gauge two subgroups of the left x right WZNW 
group, the upper triangular maximal nilpotent subgroup on the left and the lower 
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triangular one on the right hand side. The nilpotency of the triangular subgroups 
is crucial to this ambidextrous generalization of the usual vector gauged WZNW 
models, and in fact the nilpotency of the gauge group is the reason for the 
appearance of the simple polynomial structures in Toda theory. The constrained 
WZNW model is recovered in this framework by an appropriate partial gauge 
fixing which leaves the left- and right-moving triangular gauge transformations 
mentioned earlier as a residual gauge symmetry. 

In most of our considerations we rely heavily on the use of a class of natural 
gauges used in studying the gauge invariant differential polynomials in the review 
paper [lo] by Drinfeld and Sokolov. The basic property which makes the DS 
gauges convenient is that in each DS gauge the surviving components of the KM 
current serve as a basis for the w-algebra. 

Working in the DS gauges, we give a simple algorithm to find the KM transfor- 
mations which implement the canonical transformations generated by the 
w-algebra. This provides us with a new method both for computing the w-algebra 
and for determining the action of the w-algebra on the Toda fields. Our method 
crucially depends on using the embedding WZNW theory and its full, non-con- 
strained KM algebra. We illustrate the method on the examples of A, and B, and 
demonstrate its power by computing the complete w-algebra relations for the 
rather non-trivial example of G,. 

We find a DS gauge which enables us to construct a primary field basis of the 
w-algebra. As far as we know a general algorithm for constructing primary 
w-generators has not been known before, although such generators have been 
found in low dimensional examples [6]. We note that even the existence of a 
primary field basis is not completely trivial, since such a basis is constructed by a 
non-linear transformation [6] even if one starts from w-generators transforming in 
a linear (inhomogeneous) manner under the Virasoro algebra. Our construction of 
the primary w-generators is based on a special SL(2, R) subgroup of the WZNW 
group, which plays an important role throughout the theory. The primary 
w-generators are associated in a natural way to the highest weight states of this 
X(2, R) in the adjoint representation of the WZNW group. 

There have been attempts [lS] at constructing polynomial extensions of the 
Virasoro algebra from a KM algebra by using the higher Casimirs of the underlying 
Lie algebra similar to the manner in which the second order Casimir is used in the 
Sugawara construction. On the quantum level these Casimir algebras close only 
under very restrictive conditions on the KM representation. We show that the 
leading terms (i.e., terms without derivatives) of the w-generators are always 
Casimirs, and that the Poisson bracket version of the Casimir algebras always 
close. In fact, we prove that these classical Casimir algebras are obtained from the 
corresponding w-algebras by a certain truncation, and thus the Casimir algebras 
can be used to investigate the leading terms of the w-algebras. For the classical Lie 
algebras AI, B,, and C, we give the explicit form of the Casimir algebra. 

We also consider the existence of quadratic relations for the w-algebras. In the 
case of the AI, B,, and C, Lie algebras it is easy to display w-generators with quad- 
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ratic relations. The above mentioned relation between the Casimir and w-algebras 
shows that for the other Lie algebras the w-relations are necessarily of higher 
order. 

Finally, we investigate how the Toda fields can be reconstructed from the 
w-generators. This reconstruction is a reduced version of the reconstruction of the 
group valued WZNW field from the KM currents, and this tells us that every Toda 
solution with regular v-generators can be represented by a regular WZNW solu- 
tion. The reconstruction problem leads us to studying the differential equations 
satisfied by the gauge invariant components of the constrained WZNW field. This 
way we recover the Lax operators studied in [lo], which also appear in the 
generalized Schriidinger equations of Ref. [S]. For AI, B,, C,, and G2 the 
reconstruction problem can be reduced to solving a single ordinary differential 
equation of the order of the defining representation of the corresponding algebra, 
in all other cases one inevitably has a pseudo-differential equation. We will see that 
one has a single ordinary differential equation exactly when the representation in 
which the group valued WZNW field is taken is irreducible under the SL(2, R) sub- 
group mentioned earlier, and that in general the structure of the pseudo-differential 
operator depends on the decomposition of this representation under the SL(2, R) 
subgroup. 

The plan of the paper is the following: In Section II we present a short review of 
the reduction of the WZNW model to Toda theory and describe the gauged 
WZNW framework. We elaborate on the role of the residual gauge invariance and 
on the gauge invariant quantities in Subsection 11.2. The longest and most impor- 
tant section is III. We start it with the definition of the w-algebras. In Subsec- 
tion III.1 we present the construction of the Drinfeld-Sokolov gauges and observe 
that in these gauges the w-algebra reduces to the Dirac bracket algebra of the sur- 
viving KM current components. In Subsection III.2 we exhibit a primary field basis 
of the w-algebra and illusrate it with B,. In Subsection III.3 we give an algorithm 
to implement the action of the w-algebra by means of KM transformations and 
illustrate the procedure with Az and B,. In Subsection III.4 we first display a sub- 
class of Drinfeld-Sokolov gauges where the w-algebra relations are quadratic for 
A,, B,, and C,. Then we introduce the “diagonal” gauge, which is frequently used 
in Section IV, and briefly discuss the related Miura-transformation. Subsection IV. 1 
contains a detailed analysis of the relation between the Casimir Poisson bracket 
algebras and the w-algebras. In Subsection IV.2 we present the explicit Poisson 
bracket algebra of the Casimir operators of the classical Lie algebras 14,, B,, and 
C,. In the last section, V, we study the differential and pseudo-differential operators 
which appear when the Toda-fields are reconstructed from the w-generators (or 
the constrained WZNW fields are reconstructed from the KM currents). There are 
three appendixes; Appendix A contains our conventions and some important group 
theoretical results, Appendix B contains the complete w(G2) algebra and 
Appendix C contains the details of the calculations of the Casimir algebras. We end 
the paper by summarizing the main results and giving some conclusions. 

595/203/l-6 
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II. TODA FIELD THEORY AS A GAUGE THEORY 

In this section we first summarize the main points of the redution of WZNW 
models to Toda theories. Then we show how to set up a Lagrangean framework for 
the reduction, using an ambidextrous generalization of the usual vector gauged 
WZNW models. Then we elaborate on the concept of residual gauge transforma- 
tions and on the corresponding gauge invariant quantities. In particular, we point 
out that in the WZNW framework w-algebras appear naturally as symmetry 
algebras of Toda theory. 

11.1. Toda Theory as a Gauged WZNW Model 

The so called Toda field equations constitute a rather interesting set of integrable 
(soluble) equations. These equations appear naturally in various problems (cylin- 
drically symmetric instantons [16], etc.) and they can also be thought of as a 
generalization of the ubiquitous Liouville equation: 

a+ a_4+Md=O, where A4 = const.. (2.1) 

Now the Toda equations are given as 

(2.2) 

where Km8 is the Cartan matrix’ of a simple Lie algebra, A denotes the set of simple 
roots and the Ma’s are (positive) constants. The corresponding Lagrangean is 

where K is the coupling constant of the theory. Clearly (2.2) reduces to the Liouville 
equation (2.1) by making the simplest choice for K,,, namely the choice when K,,,, 
is just a number (corresponding to a rank one algebra). In fact Toda field theories 
are also distinguished by being the only two dimensional, nontrivial conformally 
invariant models which are soluble [S, 161 in the class of scalar theories without 
derivative couplings. 

These theories possess an imporved energy-momentum tensor 

(2.4) 

with vanishing trace, 8 + _ = 0, on shell. Interestingly, the general solution of (2.2) 
can be written in closed form [16]. 

’ Our conventions are collected in Appendix A. 
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Let us recall first, how Toda theories can be regarded as constrained WZNW 
models. We start with the WZNW action based on a connected real Lie group G 
(with maximally non-compact simple real Lie algebra 3) 

(2.5) 

where g is a group-valued field and B, is a three dimensional manifold whose 
boundary is Minkowski space-time. We choose the coupling constants IC and k to 
be related by the equality k = -4x 

This action possesses left and right KM symmetries. Their Noether currents 
associated to some Lie algebra element, A, are given as 

J(A)=Tr(l.J), J=lc(a+ g)g-’ 

7((n) = Tr(l +J), 3= -Kg-‘(a ~ g). 
G-6) 

The field equations are equivalent to the conservation of the left and right currents: 

a- J=O, a+Lo. (2.7) 

Let now $’ and va (a E A) be arbitrary positive numbers and let us denote the set 
of positive roots by @ +. The main result of Ref. [12] was that by imposing the 
constraints, 

JUG I= M, &E-J = -KV3, C?EA 

JV,) = 0, &E-.)=0, cp~@+\A 
(2.8) 

the equations of motion of the WZNW theory (2.7) reduce to the Toda field equa- 
tions (2.2). To prove this result we start with the (local) Gauss decomposition 

g=ABC (2.9a) 

of the group-valued field g, where 

This group-valued Gauss decomposition is locally unique for Lie groups G with 
maximally non-compact Lie algebras. 
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Now exploiting the fact that pa and vLx are zero for all but the simple roots, the 
constraints (2.8) can be rewritten as 

(2.10) 

Substituting (2.10) into the field equations (2.7) one indeed recovers the Toda equa- 
tions (2.2) (with M” = lt112 @va). It can be shown that this reduction is canonical 
in the sense that the Poisson brackets of the Toda variables d and d can be 
calculated either from the Toda or from the WZNW action (as a requirement, this 
fixes the relationship between the coupling constants). 

We remark that the famous Leznov-Savaliev general solution of the Toda field 
equations [16] can be derived effortlessly from the general solution of the WZNW 
field equations (2.7), 

A++, x-J= gL(x+)‘gR(x-), (2.11) 

where g, and g, are arbitrary group-valued functions constrained only by the 
boundary conditions and there is an obvious constant-matrix ambiguity in the 
definition of g, and g,. The general solution of the Toda equations can be obtained 
from (2.11) by first imposing the constraints (2.8) and then decomposing the 
constrained WZNW solution according to (2.9) [12]. In Section V we shall show 
that it is equally easy to recover the solution of the Toda field equations in the form 
recently found by Gervais and Bilal [8] from (2.11). 

As the quantization of Liouville and Toda theories is expected to be simpler in 
the WZNW formulation, it is worthwhile to find a Lagrangean realization of the 
reduction of the WZNW model to the Toda theory. In the following we show that 
an ambidextrous generalization of gauged WZNW models [ 141 provides a natural 
framework to carry out this reduction. For example, gauged WZNW models turned 
out to be useful in the Lagrangean description of the Goddard-Kent-Olive coset 
construction (GKO) [3]. 

We shall need the Polyakov-Wiegmann identity [17] expressing the WZNW 
action for the product of three matrices A, B, C as the sum of the respective actions 
for A, B, and C, modulo local terms: 

S(ABC) = S(A) + S(B) + S(C) 

+K d2xTr{(A-‘a-A)(a+B)B-’ s 

+(B-‘a-B)(a+C)C-‘+(A-%A)B(a+C)C-’B-l). (2.12) 
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Next we want to consider the gauged version of the WZNW theory, i.e., we are 
looking for an action invariant under the transformations, 

where a, p are functions of both x+ and x-, and H, fi are two isomorphic 
subgroups of G. 

Let us first recall the “usual” gauged WZNW models [14]. In the standard case 
one gauges a diagonal (vector) subgroup, H, of the Kac-Moody group GL x GR. 
Now the transformation of g under the vector subgroup is given as 

g+w-‘, Y(Xf, X-)EH. (2.14a) 

It is easy to see that the action functional 

Z(g, h, a;, = S(hgE-1) - S(hh-I), h&H 

is gauge invariant, provided (2.14a) is supplemented with 

h+hy-‘, KJiy-? (2.14b) 

Using (2.12), Z( g, h, &) can be rewritten as 

+A- gA+g-‘--A-A+}, (2.15) 

where S(g) is the WZNW action (2.5) and 

A- =h-’ a-h, A+ = (a+~-lpi. (2.16) 

In the action functional (2.15) A _, A + are regarded as the light-cone components 
of some “gauge field” belonging to the adjoint representation of H, transforming 
according to (2.16), and its gauge invariance is obvious from the above construc- 
tion. The variation of this action with respect to the non-propagating gauge fields 
A+ provides constraints which classically set the currents of H to zero. It has been 
demonstrated [14] that a careful quantization of (2.15) yields the GKO coset 
construction. 

At first sight it seems impossible to generalize (2.15) to be invariant under the 
more general transformations (2.13), since now the only obvious candidate for an 
invariant action is just S(hgz-‘) which is non-local in the gauge fields. However, 
in the rather degenerate case when H and ii are the subgroups of G generated by 
the step operators associated to the positive and negative roots, and denoted by N 
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and fl, respectively, their Lie algebras are nilpotent, and hence one has the crucial 
property that 

S(h) = S(h) - 0. (2.17) 

So S(hgh - ‘) - S(g) is local, therefore the gauge fields A _, A + in Eq. (2.16) (where 
now h EN and &E fi) can be used in this case in the same way as for the case of 
a diagonal subgroup to set the corresponding N and fi currents to zero. Since the 
constraints we want to implement set certain currents to constants rather than to 
zero, we consider the action 

Z(g,A-,A+)=S(g)+~~dz~Tr{A-(~+g)g-’+(g-’~-g)A. 

+A- gA+ g-‘-A-p-A+V}, (2.18) 

where ~1, v are special (constant) matrices, given by 

v= 1 ;la12v’E,, 
EEA 

p= c ;la12p’E-,. 
ClEA 

A _ , A + are now independent gauge fields in the adjoint representation of the sub- 
groups N and fi so they are nilpotent matrices. The invariance of the action (2.18) 
under the gauge transformations, 

g--%P-‘3 A- +aA-a-‘+aa-a-l, A+ --+B~+~-‘+(~+B)B-l~ 
(2.19a) 

where 

a=++,x-)EN and /l=fi(x’,x-)ER, (2.19b) 

is now not completely obvious because of the non-gauge-invariant looking terms, 
Tr(A + v + A- cl). However, these terms change by a total derivative under gauge 
transformations because of the special form of A + , A _ and because the matrix v 
(resp. p) contains only step operators corresponding to simple positive (resp. 
negative) roots. For example, under the transformation (2.19) with 

h-+9 x-)=exp 1 $,E-, 
We@+ 1 

we have 
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and the term Tr A + v indeed changes only by a total derivative. The equations of 
motion following from (2.18) are (with cp E @ + ) 

a+(g-la_g+g-lA~g)-[A+,g~‘a_g+g-lA_g]+a~A+=O (2.20a) 

a~(a+gg-‘+gA+g-l)+[A-,a+gg~l+gA+g~ll+a+~~=o (2.20b) 

Tr[E~,(g~‘&g+g~‘Lg-v)]=O (2.2Oc) 

Tr[E,(a+gg-‘+gA+g-‘-p)]=O. (2.20d) 

Now making use of gauge invariance, A, and A ~ can be set equal to zero 
simultaneously and then we recover from (2.20) the equations of motion of the 
WZNW model (2.7) together with the constraints (2.8). Note, however, that setting 
A + , A _ to zero is not a complete gauge fixing. Indeed, it is clear that the condition 
A + = 0 is invariant under chiral gauge transformations a = tl(x+) and /I = /?(x-) 
which are in the intersection of the gauge group and the KM symmetry group of 
the theory. Since in the A + =0 gauge (2.20) reduces to (2.7) and (2.8), it follows 
that the residual gauge transformations 

g+qB-‘9 where L-L=cI(x+)EN, /?=/I(x-)EN (2.21) 

must leave (2.8) invariant. This can also be verified by using the standard transfor- 
mation property of the currents J and 7 under KM transformations: 

J+cda-‘+K(c?+a)aC’ and s+pp + K(L p)p-‘. (2.22) 

Note that these chiral gauge transformations (2.21) form the complete residual 
gauge group of the gauge A f = 0. 

From now on we stay in this gauge. Here we point out how the residual gauge 
transformations (2.21) arise from the Hamiltonian point of view. For this, as well 
as in the rest of the paper, we take the space of solutions, given by (2.1 l), of the 
WZNW theory as our phase space. This is convenient here because of the left-right 
factorized form of the general solution. The translation to the equivalent equal time 
canonical formalism could be made by parametrizing the solutions by their initial 
data and expressing the initial data in terms of the canonical variables. To make 
this translation as easy as possible, in this paper we use equal time Poisson brackets 
on the space of solutions. After these remarks, let us observe that the KM Poisson 
brackets of those current components which are to be constrained according to 
(2.8) vanish on the submanifold of the phase space defined by (2.8) (constraint- 
surface), i.e., we are dealing with first class constraints. Now first class constraints 
always generate such canonical transformations which leave the constraint-surface 
invariant, and it is easy to see that in our case these are naturally identified with 
the residual gauge transformations. 

11.2. Gauge-Invariant Quantities 

Clearly the Toda fields, 4’ in (2.9b), are not affected by the residual gauge trans- 
formations (2.21). Assuming the validity of the Gauss decomposition (2.9) the Toda 
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fields constitute a complete system of independent invariants with respect to these 
transformations on the “constraint-surface.” In other words, Toda theory can be 
identified, at least locally, with the constrained WZNW model modulo residual 
gauge transformations. From now on we shall refer to the residual gauge transfor- 
mations (2.21-2.22) simply as gauge transformations. 

It is important to note, that (2.9) is valid only in a neighbourhood of the identity 
of G. As a consequence of this non-global nature of the Gauss decomposition, our 
reduction can generate singular Toda solutions from perfectly regular WZNW 
solutions. This is the basis of one of the most important properties of the WZNW 
setting of Toda theory, namely, that the physically allowed singularities of the Toda 
solutions are precisely those which disappear by using the WZNW variables. We 
have shown this in Ref. [ 121 in the special case of ,X(2, R) by proving that the 
requirement that a Liouville solution be obtained from a regular solution of the 
WZNW theory is equivalent to demanding that the associated energy-momentum 
tensor (2.4) be regular. 

In Section V we shall show that this generalizes for a rank I algebra where 
besides the energy-momentum tensor there are I- 1 additional ‘Y-densities.” In 
that case the Toda solutions with regular w-densities can be represented by regular 
WZNW solutions, even if they appear singular in terms of the original local Toda 
variables 4’. It can be argued that the singular classical solutions with regular 
w-densities correspond to an important sector of the quantized Toda theory. In 
the WZNW context these solutions are clearly on the same footing as the 
manifestly regular solutions. Thus the WZNW variables are the proper ones for 
Toda theories. However, since we must still identify gauge-related WZNW fields, 
we are lead to study the gauge-invariant quantities in the constrained WZNW 
theory. 

The Toda fields 4” are invariant, but they are only well defined for WZNW solu- 
tions in that neighbourhood of the identity where the Gauss-decomposition (2.9) is 
valid. Of course one could cover G with a finite number of patches and introduce 
locally regular Toda fields on them. These local fields would be related by some 
group transformations on the intersections of these patches and together they 
would define a global Toda field. 

Fortunately there is a simpler and more direct way to find globally well defined 
quantities which reduce to the local Toda fields in the neighbourhood of the iden- 
tity. Consider some (d-dimensional) representation of G and choose a basis such 
that the Cartan subalgebra is represented by diagonal matrices, and the Lie 
algebras of N and fl are represented by upper and lower triangular matrices, 
respectively. Then, because c( and /I in (2.21) are upper and lower triangular 
matrices, respectively, with l’s in their diagonals, it follows that the lower-right 
sub-determinants 

(2.23) 
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of the matrix (gu) are all gauge-invariant quantities. It is also easy to see that in 
the Gauss decomposable case the Toda fields 4” can be recovered as linear com- 
binations of logarithms of the gi. 

For example, let us consider A, and take G = SL(1 + 1, R) in the defining 
representation. Using the standard convention, in which H, has 1 in its ii-slot, - 1 
in its (i + l)(i + 1)-slot, and O’s elsewhere, for a Gauss decomposable g one obtains 
the simple formula, 

cJi ‘e-4,-d2 5 where #k = 4”“. (2.24) 

The local Toda field 4 indeed becomes singular where the Gauss-decomposition 
ceases to be valid, that is where one of the sub-determinants L& changes sign. 

In general the globally well-defined sub-determinants (2.23) yield an over- 
complete system of invariants, but in each concrete case one can single out I 
independent ones. For example, for the defining representations of the classical 
groups, the last 1 sub-determinants starting from g, suffice. They can be used as 
global variables for the Toda theory, after imposing the constraints (2.8). Since 
these sub-determinants are polynomial in the components of the basic WZNW 
field, g, they appear better suited for quantizing Toda theories than the original 
Toda fields themselves. 

For later use we note that beside the sub-determinants, which are fully gauge- 
invariant polynomial quantities, there are other important quantities, which are 
linear in g, but invariant under left (or right) gauge transformations only. These are 
simply the elements of the last row (column) of g (and of g, and g, in (2.11) 
respectively). 

As the KM algebra plays a central role in WZNW theories, it is clear that gauge- 
invariant quantities formed out of the KM current J (and 7) will also be important 
in the Toda theories. To illustrate this, we recall how the conformal invariance of 
the Toda theory appears in the WZNW framework. Here we restrict ourselves to 
the left-moving sector. It can be shown that there is a unique Virasoro algebra in 
the semidirect product formed by the KM algebra and its associated Sugawara 
Virasoro algebra, weakly commuting with the constraints (2.8). Since the residual 
gauge transformations are generated by these constraints, the energy-momentum 
density 

L = L”- Tr(J’@), where L” = & Tr(J’), $=; c H, (2.25) 
CX.Se+ 

giving rise to this Virasoro algebra, becomes gauge invariant on the constraint-sur- 
face. It follows that L must generate the conformal symmetry of the constrained 
WZNW, i.e., of Toda theory. (One can verify that, after imposing (2.8) and using 
the local coordinates defined by the Gauss decomposition (2.9), L indeed reduces 
to the improved energy-momentum tensor 0 + + (2.4).) Note that p in (2.25) has 
the property 

L-B, &I = E,, when UE A, (2.26) 
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and that the classical centre of the (Toda) Virasoro algebra is 

c = - 12k Tr(fi*), (2.27) 

where k is the level of the underlying KM algebra. 
We will see in Section III that, besides L, there are other gauge-invariant polyno- 

mial quantities formed out of the constrained KM current and its derivatives. These 
objects will be referred to as gauge-invariant differential polynomials. 

A crucial property (which we elaborate on in Section III) of the gauge-invariant 
differential polynomials is that they form a closed algebra under the KM Poisson 
bracket operation. That is, the Poisson bracket of two gauge-invariant differential 
polynomials is again expressible in terms of gauge-invariant differential polynomials 
and b-distributions. This means that if the quantities W’ form a basis in the ring 
of gauge-invariant differential polynomials then we have 

{ W’(x), W’(y)} = 1 Pf( W) cw(X’ - y’), 

where the Pi are polynomials of the W”s and their derivatives. These Poisson 
bracket relations generate a non-linear algebra, reminiscent of a universal envelop- 
ing algebra. 

This non-linear algebra of the gauge-invariant differential polynomials always 
contains the Virasoro algebra, hence it is a polynomial extension of it. This way one 
associates an extended conformal algebra to every Kac-Moody algebra based on 
maximally non-compact simple real Lie algebras, for any level k. It turns out that 
this polynomial algebra is always finitely generated, by I= rank(%) elements. In the 
literature these algebras are referred to as classical w-algebras. 

The quantum analogues of these Poisson bracket algebras play an important role 
in conformal field theory [4-93. It has recently been realized [S-6] that quantum 
w-algebras can be constructed by quantizing the so-called second Gelfand-Dickey 
Poisson bracket algebra of pseudo-differential operators, which has been studied 
earlier in the theory of integrable systems and is known to be isomorphic to the 
algebra of gauge-invariant differential polynomials [lo] mentioned above. 

It is worth noting that the differential operators which provide the bridge 
between the original Gelfand-Dickey construction and the KM approach to 
w-algebras [lo] (also constructed by an independent reasoning in [S] ) appear 
naturally in our framework. They are nothing but the operators defining the 
differential equations satisfied by those (last row) components of g, which are 
invariant under left gauge transformations. These differential equations can be 
obtained as a consequence of the obvious relation 

(Kd+ -J)g,=O, (2.29) 

where (2.29) is taken in the defining representation of the corresponding maximally 
non-compact real Lie algebra 9 (see Section V for more details). 
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In their review paper [lo] Drinfeld and Sokolov studied the algebra of gauge- 
invariant differential polynomials by making use of the constrained KM algebra. 
We shall see that exploiting the full (unconstrained) embedding KM algebra yields 
further insight into the structure of classical w-algebras and leads to new results. 

III. THE W-ALGEBRA 

In this section we undertake a detailed analysis of the w-algebra introduced in 
Section II. We first make the definition of the w-algebra more explicit. The basic 
objects we are dealing with are gauge-invariant differential polynomials, W’, 
defined on the space P of the constrained KM currents (i.e., currents J satisfying 
(2.8)). The Poisson brackets of the W’ are obtained by first extending their domain 
to the whole KM phase space, K, computing the Poisson brackets on K and then 
restricting to P. The Poisson brackets on K depend on the chosen extension of the 
W”s (denoted by pi), but their restrictions to P, which are again gauge invariant, 
do not. This follows by using the standard properties of the Poisson bracket from 
the first class nature of the constraints, and from the fact that the W”s are invariant 
under the gauge transformations generated by the constraints (and from the 
assumption that the mi are real analytic in a neighbourhood of P). 

There is no reason to expect that a generic extension of the W”s closes under the 
Poisson bracket on K, but there is a trivial extension, which has the property that 
the Poisson brackets of the @“s not only close but have the same formal structure 
on K as on P, i.e., 

{W(x), W(y)) =c P$ W) 6’k’(X’ - y’), 
k 

where the Pf’s are the “structure differential polynomials” (2.28) of the w-algebra. 
This particular extension is constructed as follows. First one expands the general 
KM current JE K in the Cartan-Weyl basis and notes that in P the upper trian- 
gular and Cartan components vary freely, while the lower triangular components 
are completely fixed by (2.8). The trivial extension w’ of W’ is then defined to be 
the one which simply does not depend on the lower triangular current components. 

Every element W of the w-algebra generates canonical transformations on the 
KM phase space by the formula 

where m(x) is any extension and a(x) is an arbitrary test function. (Note that our 
equal-time Poisson brackets and spatial 6’s are in fact equivalent to light-cone 
brackets and 6’s. Prime everywhere means, even on 6’s, “twice spatial-derivative” 
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and this reduces to a+ on quantities, J(x), W’(x), and our test functions, which 
depend on x = (x0, xi) through x+ only.) 

Since the transformation 6~ is canonical (preserves the KM-structure and hence 
the co-adjoint orbits in K), it follows that it can be represented as a field dependent 
KM transformation, i.e., 

6@J=&J= [R, J]+lcR’, 

where R(J) is some (J-dependent) element of the KM algebra. The transformation 
6~ transforms P into itself, and in fact induces a transformation S*, on the space 
A4 of the gauge-orbits in P. The transformations 6~ corresponding to different 
extensions @’ of W differ on P only by (field dependent) gauge transformations, and 
thus the induced transformation S*, does not depend on the extension (only on W). 

Of course, the reduced phase space A4 carries its own Poisson bracket structure 
which is inherited from the Poisson bracket structure of K, and is described by the 
standard Dirac bracket formula if one parametrizes A4 with some section of the 
gauge orbits in P (gauge choice). The induced W-transformations S*, are canonical 
transformations on A4 with respect to this induced (Dirac) Poisson bracket. 

In Subsection III.1 we introduce some convenient gauges (called DS gauges), 
which will be used to show that the W-algebra has a finite (Z-dimensional) basis 
and to exhibit some particular bases W’ (i= 1 . . . I). The particular W-generators 
W’ will be the gauge-invariant extensions (from the gauge section to P) of those 
current components (called DS currents) which survive the gauge fixing. Thus, in 
these gauges the W-algebra appears as the Dirac bracket algebra of the DS 
currents. This is the basic fact on which most of our results are based. 

In Subsection III.2 we exhibit a conformal field basis of the W-algebra. In 
Subsection 111.3, working in a DS gauge, we shall present an algorithm for finding 
the field dependent KM transformations which implement the induced 
W-transformations S*,. This algorithm is our main result since it enables us to 
calculate the action of the W-algebra on any gauge-invariant quantity. In the last 
section we deal with some particular gauges which facilitate the study of some 
properties of the W-algebra. 

III. 1. Drinfeld-Sokolov Gauges 

In this section we recall the construction of a class of particularly convenient 
gauges in which the properties of the W-algebra become apparent. This class of 
gauges has been introduced first by Drinfeld and Sokolov [lo], so we call them DS 
gauges. 

First we consider a special ~42, R) subalgebra of 9, 9, which will play an impor- 
tant role in what follows. This subalgebra is spanned by the Cartan element 0 in 
(2.25) and nilpotent generators I, such that 

[~+,~-I=&5 CP,Z*l= +I,. (3.1) 
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The step operators are explicitly given by 

I_ = f: ziE-,,, 
i=l 

(3.2a) 

where 

ni=2 i (K-l),. 
j=l 

(3.2b) 

Note that since Tr(Z- E,) = KZ~ any element of P, i.e., any current fulfilling the con- 
straints (2.8) (with @I=$), has the form 

.z(x)=Z- + 1 P(x)H,+ c PWE,. (3.3) 
EEA lPF@+ 

The adjoint representation of 3 decomposes into Y multiplets. Since Z? is an 
element of the Cartan subalgebra of Y the step operators are b-eigenstates, 

CA &I = WdE,, (3.4a) 

where h(q) is the height of the root cp, i.e., 

h(q)= i mi, 

I 

if cp = C m,a,. (3.4b) 
i= 1 i=l 

Let 4 be the eigensubspace of Z? of eigenvalue h. If h # 0, then 

dim ‘?& = number of roots of height h. (3.5) 

It can be shown [18, lo] that, if for 1 <h <h, (h,: height of the highest root 1(1), 

n,=dim%J,-dim5&+, (Inh=l), (3.6) 
\h / 

iS not zero, then h is an exponent of 3 with multiplicity nh. 
We recall the meaning of the exponents and their multiplicities [ 181: The ring of 

group-invariant polynomial functions on % is generated by I homogeneous elements 
whose degrees are determined by the exponents, h. More precisely, there are exactly 
n,, independent generators of order h + 1. In other words, these generators define a 
complete set of independent Casimir operators. We note that h = 1 and h = h, are 
always exponents. The multiplicity of the exponents is always 1, except for D,,, 
where there are two independent Casimirs of order 21. 

Note that for (h > - 1) I- maps ‘?&+ 1 into gh injectively, that is 

(3.7) 
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where I- (gh+ r ) = [I-, ‘Sh+ ,I. For any exponent, h, let V,, be a linear complement 
of I- (%h + r ) in ‘SJ, (dim Vh = nh) and let us also introduce the direct sum 

V=@ v, (dim V=Z). (3.8) 
h 

We choose a basis Fi (i= 1, . . . . 1) in V in such a way that 

[p, Fi] = hiFi (3.9a) 

holds, where 

l=hi<h*< ... <h,=h, (3.9b) 

is the list of the exponents with possible multiplicities included (see Appendix A). 
The basic fact we need is that any constrained current of the form (3.3) can be 

uniquely gauge transformed into a current j(x) of the form 

~(x)=A(x)J(x)A-‘(x)+&4’(x)A-‘(x)~z~ + f: W’(X)Fi, (3.10) 
i=l 

and that the W’(x) and the parameters a”(x) of the gauge transformation 

A(x)=exp 
[ 

1 P(x)E, 
fppee+ 1 

are differential polynomials in the components of J(x). The proof of this statement 
[lo] is actually easy. Using the fact that the gauge transformations are generated 
by upper triangular matrices, the inspection of (3.10) reveals that it is uniquely 
soluble in purely algebraic steps for both W’(x) and a9(x) in terms of J(x). 

Denote now by M, the space, whose “points” are currents of the form (3.10). 
The previous statement tells us that M, defines a complete gauge fixing. Moreover, 
it also follows immediately that the components, W’(x), of the unique intersection 
point of M, with the gauge orbit passing through JE P define gauge-invariant dif- 
ferential polynomials on P, which freely generate the w-algebra. In other words, 
the IV’s form a basis in the algebra of gauge-invariant differential polynomials. 

On the other hand, a completely general element of the KM algebra K can be 
expanded as 

J(X)= i U’(X)Fi+ 1 <-‘(X)E-q + 1 t’(X)[Z- 9 Eq] (3.11) 
i=l f#psrg+ CpE@+ 

and M, is obtained by first constraining the t-‘+‘(x) by imposing (2.8) and then 
also fixing the residual gauge freedom by setting the C”(x) to zero. The current 
components, U’(x), which are not affected by this two step restriction and the 
corresponding gauge-invariant differential polynomials, W’(x), are related by 

~i(4,My = wxb+. (3.12) 
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However, it should be stressed that conceptually the U’(x) (linear functions on K) 
and the W’(x) (gauge-invariant differential polynomials on P) are very different 
objects and must be carefully distinguished. To make this distinction even clearer 
we introduce a separate name for the U’. From now on we shall refer to them as 
DS currents. It will turn out that most of our results are a consequence of (3.12). 
For example, this relation immediately implies that each differential polynomial 
W’(x) contains a leading term, i.e., a term without derivatives. In Subsection IV.1 
we shall prove that the leading terms of any W-basis are obtained by restricting 
Casimirs from K to P. 

Now we discuss how the W-algebra appears in a DS gauge. Clearly M, inherits 
a Poisson bracket structure from the embedding KM algebra. This induced Poisson 
bracket structure is given by the familiar Dirac bracket formula [19] 

which is valid for two arbitrary phase space functions (fand g are functions on the 
KM phase space but only their restriction to MY really matters). In this formula 
the t* are the current components to be constrained (cf. (3.11)), and D&x, y) is 
the inverse of 

which satisfies 

C%Y Y) = (5WT 5%9), (3.14) 

(3.15) 

for arbitrary a, y E @. (Observe that the matrix-elements C@, where ~1, PEW, 
vanish on P, while the submatrix C pap (a, /I E @ + ) is regular on M,. Hence CaB 
is also regular on M,.) 

Now the DS currents, U’(x), which survive the complete gauge fixing provide us 
with coordinates for the phase space My. Thus the induced Poisson structure of 
M, can be described by specifying the Dirac brackets of the U’(x). The crucial 
point is that the Dirac brackets of the DS currents satisfy 

{U’(x), Vi(y)}* = {W’(x), W’(y)} on M,, (3.16) 

as a consequence of (3.12). As discussed earlier the Poisson brackets of the W”s are 
in principle calculated by first extending them to K and then restricting the Poisson 
brackets calculated on K to P. Because of the gauge invariance of the W%, this is 
equivalent to calculating the Dirac brackets of the DS currents. 

To summarize, we see that if the space of gauge orbits A4 is parametrized by the 
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gauge section My, then its Poisson bracket structure is naturally described by 
means of the Dirac brackets of the DS currents, and that the W-algebra can in fact 
be regarded as the Dirac bracket algebra of the DS currents. It will be 
demonstrated in the rest of this section that the properties of the W-algebra are 
most effectively studied by making use of the DS gauges. 

The family of DS gauges is parametrized by the possible choices of the linear 
space V in (3.8). It is easy to see that U’()x)-L(x) on M, and therefore 
W’(x) N L(x) on the constraint-surface P, for any DS gauge. 

111.2. Conformal W-Generators 

The energy-momentum density of the Toda theory, L in (2.25), generates the 
action of the conformal group on the KM phase space. This conformal action 
operates as 

J+ J+6,J 

ii,J= -j-r d 
(3.17) 

x1 a(x)(L(x), J} = (aJ)’ + rca”j? + a’[fi, J], 

where JEK and a(x) is any test function. The main point of this section is the 
observation that the W-generators associated to a certain DS gauge (highest weight 
gauge) are primary fields with respect to this conformal action. 

To demonstrate this it will be useful to describe the conformal action in terms of 
field dependent KM transformations. Let R(J) be a KM algebra valued function 
defined on the KM phase space. Then it generates an infinitesimal (field dependent) 
KM transformation: 

J+ J+h,J, 6,Js [R, J] + uR’. (3.18) 

Now it is not difficult to verify that the conformal action 6, is implemented by the 
field dependent KM transformation generated by the particular KM valued 
function 

Ro(a, J) = i aJ + a’fi, (3.19a) 

that is one has 

6,J=6,J for any J. (3.19b) 

The conformal action (3.17) transforms the set of constrained KM currents, P, 
into itself. Another crucial property of 6, is that on P it commutes (modulo gauge 
transformations) with the action of the gauge transformations (2.22). Therefore 
(3.17) induces a conformal action on the gauge equivalence classes of the con- 
strained currents, which amounts to an action on the set of gauge fixed currents; 
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M,, representing those equivalence classes, for any choice of V. Our purpose below 
is to describe this induced conformal action 

J-J+SEJ (JE MY) (3.20) 

operating on My. 
In general J+6,J#My, and therefore to determine STJ we must find the 

compensating (unique) gauge transformation, Y = r(a, J), such that 

J+ 6,J+ ~,JE M,, for any JE Mv, (3.21a) 

and then we have 

6;J=6,J+iirJ=6,J with R = R(a, J) = R,(a, J) + r(a, J). (3.21b) 

Before trying to determine r(a, J) let us recall that SE is a canonical transforma- 
tion on the reduced phase space M y, generated by L by means of the Dirac 
bracket, 

S;J= -~;ndx’a(x){L(x), J}*= -j;‘dx’a(x){U’(x), J}* (3.21~) 

on M,. Here the second equality holds provided we normalize the DS current U’ 
according to 

U’(x) = L(x) on M,, (3.22a) 

which corresponds to the normalization of the basis vector F,, 

Tr F,I- =K. (3.22b) 

With this normalization, as an obvious consequence of (3.16) and (3.21c), we have 

St U’ = a( Ui)’ + 2a’iJ’ - K Tr(P’)u”‘. (3.23) 

Next we want to determine the induced conformal transformation of the U’ for 
i > 2. First, for an arbitrary gauge fixed current 

J(x) =I_ + i U’(x)Fi (3.24) 
i=l 

one easily sees that 

&,J= i [u(Ui)‘+(hi + l)u’U’]Fi +rca”fi, (3.25) 
i= 1 

where hi is the height of the Lie algebra element Fi according to (3.9a). The last 
term is “out of gauge” so one indeed needs a “compensating” gauge transformation. 

595/203/l-7 
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In principle it is a purely algebraic problem to find r(a, J), but in practice it is quite 
hard to produce an explicit formula for the solution in an arbitrary DS gauge for 
an arbitrary Lie algebra. 

However, one can find a special gauge in which the form of r(a, J) is particularly 
simple and the DS currents are primary with respect to the induced conformal 
action (3.21). The construction is based on the ~42, R) subalgebra Y introduced in 
the previous section. Since the adjoint representation of $9 decomposes into Y mul- 
tiplets, it is natural to consider the corresponding highest weight states, i.e., those 
Lie algebra elements which commute with I,. It is easy to see that the highest 
weight states in 4 span a natural complement of Z-(9& + 1). Choosing this par- 
ticular complement in the construction presented in Subsection III.1 we obtain a 
particular DS gauge, which we call the highest weight gauge. By using the fact that 
the basis vectors Fi of V in (3.8) now satisfy the condition 

Fl-I+, Cl+, Fil = 0, i = 2, . . . . 1, (3.26a) 

one easily proves that in the case of the highest weight gauge the compensating 
gauge transformation r(a, J) is given by the simple formula 

r(a, J) = - $ca”z+. (3.26b) 

The corresponding conformal variation of the DS currents U’ then turns out to be 

St U’= a(V) + (hi + 1) a’U’ for i = 2, . . . . 1, (3.27) 

i.e., they are indeed primary with respect to the induced conformal action (3.21). 
Equivalently, one can say that the corresponding gauge-invariant differential poly- 
nomials, W’, are primary with respect to the original conformal action (3.17) 
(restricted to P). The conformal weights of the W”s (Vi’s) are (hi + l), i.e., they are 
in one-to-one correspondence with the orders of the independent Casimirs of Y. 

To summarize, we have proven that the generators W’ (i = 2, ,.., I) defined by the 
highest weight gauge, together with L = W’, constitute a natural, conformal field 
basis of the w-algebra. This is one of our main results. As far as we know, an algo- 
rithm to find a conformal w-basis has not been known before in the general case, 
although conformal w-generators were explicitly exhibited for some particular low 
dimensional examples [6]. 

We now illustrate the idea of both the DS and the highest weight gauges on the 
example of B, = 0(3,2). We use the convention [ZO] in which this Lie algebra con- 
sists of (5 x 5) matrices which are antisymmetric under reflection with respect to the 
“second diagonal.” The Cartan subalgebra is spanned by the diagonal matrices in 
BZ. In this convention the Lie algebras of N and fi are represented by upper and 
lower triangular matrices, respectively. In particular, the E, for CI E d have non-zero 
entries only in the first slanted row above the diagonal. The Cartan element fi in 
(2.25) is then easily found to be 

B = diag(2, 1, 0, - 1, -2). (3.28a) 
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By a convenient choice of the parameters 5i in (3.2) we can choose the step 
operators of Y as 

040 0 0 
006 0 0 

000 o-4 
000 0 0 1. (3. 28b) 

(Note that the value of the parameters ~~ is irrelevant since they can be redefined 
by resealing the simple step-operators.) The elements of %h are now those matrices 
in B, that have non-zero entries h steps above the diagonal only. Before describing 
the general DS gauge, we need to know the image Z-(5?&). In fact, an easy calcula- 
tion yields that ZL(q) is the set of matrices of the form 

i ox 00-x0 000x0. 00 00 0 0 0 0 o-x 0 0 0 0 1 ( 3.29) 

Since dim ‘?Ji = 2, there is now a one parameter family of (one dimensional) linear 
sub-spaces V, of gi which are complementary to ZL(le,) in 3,. These are nothing 
but the “lines” spanned by the vectors of the form 

opo 0 0 

OOK-p 0 0 

, 

00 0 0 -p 

000 0 0 

(3.30) 

for any real p. Note that F, has been normalized according to (3.22b). (For the B, 
algebras Tr means half of ordinary matrix trace in the defining representation.) The 
general current in the “DS gauge of parameter p” is written as - 

0 pu’ 0 u2 0 

1oqu’ 0 -u2 
J(x) = I- + U’(x)F, + V(x)F, = i 0 1 0 -qu’ 0 

00-l 0 -pu’ 
00 0 -1 0 

, (3.31) 
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where q = IC - p. We designate this set of gauge fixed currents as Mp. Observe that 
for 5p = 2~ the matrix I;, is proportional to I,, so that this value of p corresponds 
to the highest weight gauge. 

It is not hard to calculate the compensating gauge transformation r(a, J) in 
(3.21) which cancels the last term in (3.25). The reader can check that the result is 

(3.32a) 

with 

y, = La”‘, y3=IZ[lcuWR-aanU1], 1= K( 2K - 5p), (3.32b) 

which reduces to (3.26b) in the case of the highest weight gauge, as it should. The 
corresponding conformal variation of U2 on Mp is given by 

SE u2 = 4a’U2 + a( U2)’ - A((K - p) aN’U1 + lc(a”U’)’ - ic2uy* (3.33) 

Since U’ generates the induced conformal action on M, through the Dirac bracket, 
from (3.33), taking (3.16) also into account, we can read off the Poisson bracket of 
W’ with W2 (restricted to P), which is now given as 

( W’(x), W’(y)} = 3 W’(x)’ 6(x1 - yl) + 4W2(x) 8(x’ - y’) 

+ A((p - K)( W9)” - lc( W9’)” + &““‘). (3.34) 

For 1, = 0, that is for the highest weight gauge, the corresponding W-generator, 
W2, is a conformal primary field of weight 4. The generator W2 = W&, associated 
to any other DS gauge (of parameter p) transforms in a complicated, 
inhomogeneous manner under the conformal action. 

111.3. KM Implementation of %f-Transformations 

Here our purpose is to study the canonical transformations defined (as discussed 
at the beginning of the section) by the w-algebra on the space of gauge orbits M. 
For this we consider the transformation S*, induced on M by the following 
lllr-transformation 6~ (acting originally on K), 

J-, J+deJ, hwJ= - i 1’” dx’ aj(x){ p’(x), J}, (3.35) 
i=l 0 

where the p(x) are some arbitrary extensions from P to K of the w-generators 
W’(x) associated to some DS gauge with gauge section M,,, and the a,(x) are 
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arbitrary test functions. We parametrize M by MY and in this parametrization the 
transformation S*, is generated by means of the Dirac bracket according to 

J+J+G*,J, S*,J= - @(a, J), J>*, (3.36a) 

with 

Q(u, J)= f: f2r dx’ a,(x) U’(x), 
j=, 0 

(3.36b) 

where the U’(x) are the corresponding DS currents. Similar to the special case of 
the induced conformal transformation SE discussed in the preceeding section, the 
induced %‘--transformation S*, can be implemented by some field dependent KM 
transformation R(a, J). 

Of course, this KM implementation is in principle possible in any gauge, but here 
we show that in the DS gauges there exists a simple, effective algorithm for actually 
computing the KM valued function R(a, J) which implements S*,, i.e., which 
satisfies 

S&J= 6,J for any JE M,. (3.37) 

This is immediately translated into the action of the w-algebra on itself, since in 
the DS gauge the W’(x) reduce to the current components U’(x). An extra bonus 
of the KM implementation is that the KM algebra acts also on the G-valued 
WZNW field g(x+, x-) and from that action we get 

Gg=d,g, that is, {Qh J), g>* = -WA J) .g, (3.38) 

where “dot” means ordinary matrix product. From this equation we can read off 
the action of the w-algebra on the Toda fields, which are the sub-determinants 
of g. 

In order to make the presentation more concrete, we consider as examples the 
w-algebras of the rank 2 Lie algebras A,, B2, and Gz. The A, example, which is 
the simplest non-trivial case, is included for the purpose of illustration. The B, 
example has some non-trivial features which will motivate some developments in 
subsequent subsections. Finally, G, (in Appendix B) illustrates the power of the 
method, since it enables us to compute the very non-trivial structure polynomials 
of this w-algebra. 

We start by presenting a general characterization of the mzgentiul (gauge pre- 
serving) KM transformations for an arbitrary DS gauge. First we pick a point, 
Jo E My, and consider the tangential KM transformations at Jo. In other words, we 
want to describe all elements R(J,) of the KM algebra, which map Joe M, into 
My, i.e., we want to solve the condition that 

Jo + 6, Jo = Jo + [R, Jo] + KR’ is in M,. (3.39) 



100 BALOG ET AL. 

To give the general solution of this condition, it turns out to be useful to supple- 
ment the decompositions introduced in Subsection III. 1, 

4= vhor-(%+l), h>,l (3.40) 

by similar ones for the subspaces ‘?P-h of Q corresponding to the negative roots 
(cf. (3.4)). Indeed, the decomposition we consider is induced by (3.40) as 

c-!-h = V-h@ U-h, for ha 1, (3.41) 

where V-h is the transpose of V,, 

V--h= (U’IUE Vh}, (3.42a) 

and U-,, is the annihilator of V, in g--h with respect to the scalar product Tr: 

Ueh= {UEShITruv=O, VUE Vh}. (3.42b) 

(The transpose in (3.42a) can be defined abstractly by means of the Cartan-Weyl 
basis as EL = E-,+,, Hb = H,, but in convenient conventions [20] it is the ordinary 
matrix transpose.) 

Having introduced the necessary definitions we now return to the study of (3.39) 
and decompose the quantities entering this condition as 

R(x)= 1 (U-hb)+U-h(X))+ 1 Yh(X), (3.43a) 
ha1 ha0 

where u-h, u-h, and yh are in the subspaces U-h, Kh, and 4, respectively, and 

J,(x) =I- + 1 u:(x), ~,Jo(x)= c Uh(X)T (3.43b) 
h>l ha1 

where both ui and oh must be in vh. By analysing Eq. (3.39), one finds that if Jo 
and all the u-h(x) are given, then the remaining components of R are uniquely 
determined differential polynomials in terms of these. Furthermore, it follows that 
the components of 6,Jo are differential polynomials of Jo and u-h as well. In fact, 
the differential polynomials, R and 8,.Zo, are linear in u-h(x), but in general non- 
linear in Jo. 

The above result provides us with a complete characterization of the tangential 
KM transformations at the arbitrarily chosen gauge-fixed current Jo. To actually 
prove this, one has to consider Eq. (3.39) height by height, starting from below, and 
use the following two properties of our Lie algebra decomposition: 

First, for h > 0, I- maps Sh into gh- i in a one-to-one manner and this map is 
in fact onto for those h which are not exponents. Second, for 1 <h < (hlL - l), I- 
maps U-h onto g-h- 1 also in a one-to-one manner. 

By using these properties of I-, it is not difficult to verify that condition (3.39) 
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is indeed uniquely soluble for R(J,,) and S,J, by purely algebraic means at every 
height, once JO and the uPh are given, and that the solution is linear in v-,,. 

Let us choose a basis IF-‘} in Oh V-,, dual to the basis {Fi) in ah Vh 

F: J.-t-- 
-Tr F,Fi’ 

(3.44a) 

Since we assume that F, E Vh,, the duality property (which we shall need later on) 

Tr F,F-j= S{, (3.44b) 

is automatic in almost all cases, i.e., for those basis vectors which correspond to 
exponents hi # hj of multiplicity 1, and we can also ensure this by a choice in the 
case of those two basis vectors which correspond to that exceptional exponent 
h = (2f- 1) of D,, whose multiplicity is 2. Using this basis, we can now write R in 
(3.43) as 

R= R(a, Jo) = i a;(x)F-‘+ c U-~(X) + c yh(x), 
i=l haI ha0 

(3.45) 

where the a,(x) are arbitrary functions and the’ u -,, and y,, are differential polyno- 
mials linear in the ai, but not necessarily in Jo. 

It is important to emphasize that, since Jo was arbitrary in the construction, this 
equation defines an element R(a, J) of the KM algebra for any J and ui. According 
to its construction, at any fixed JE M, this KM valued function R(u, J) provides 
a parametrization of the set of tangential KM transformations at J, by the I 
arbitrary real functions u,(x). Hence it is clear that by varying J and at the same 
time promoting the parameters ui to functionals of J one can write in the form 
R(u(J), J) the most general field dependent, gauge-preserving KM transformation 
on M,. So, in particular, the field dependent KM transformation implementing the 
induced q-transformation S*, (3.37) can also be written in this form with some 
functionals ui( J). 

The result we prove is that the above constructed KM valued function R(u, J) 
when considered for fixed (J-independent) Ui and varying J is the one which 
implements the induced W-transformation S*, according to (3.37) and (3.38). 

This result means that we in effect replaced the task of finding the inverse of the 
matrix C@(X, y) (3.14) which enters the standard formula (3.13) of the Dirac 
bracket, by the much easier (as will be clear from the examples) task of solving 
Eq. (3.39). 

To justify our claim we now show that 

(6dXJo) = {f, Q>* (Jo) (3.46) 

holds for an arbitrary real function f(J), where R = R(u, J) is given by the above 
construction, Q = Q(u, J) is the moment of the DS currents defined in (3.36b) and 
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Jo E M, is arbitrary. To accomplish this we first recall that any element R0 of the 
KM algebra defines a particular (field independent) KM transformation a,,, on the 
full KM phase space K, which is an (infinitesimal) canonical transformation 
generated by means of the KM Poisson bracket by the function 

Q,(J) = s,zn dx’ Tr R,(x) J(x). 

This means that the relation 

(3.47) 

is satisfied on the full KM phase space K, for any real function F(J). The trick is 
that now we take R, to be R(a, Jo) in (3.45) for fixed Jo and a. In this case we know 
that at Jo the variation 6, respects the constraints defining M, (R(a, Jo) was 
constructed by requiring this) and therefore at Jo the constraint-contributions drop 
out from the Dirac-bracket of Q, (3.47) with any quantity. This way we derive 

{E Q&Jo, = {E Q,>* (Jo). (3.49) 

On the other hand, it is easy to see that for R. = R(a, Jo) the functions QO(J) (3.47) 
and Q(u, J) (3.36b) differ on M, only by a constant. This implies that they can be 
interchanged on M, under Dirac-bracket. Taking this into account we immediately 
obtain (3.46) by combining (3.48) and (3.49) and by taking F,,, =f,Mv. This 
finishes the proof. 

We now illustrate on the simplest non-trivial example, AZ= s/(3, R), how to 
calculate the V-algebra by our algorithm. The %‘-(A,)-algebra is well known but 
it is worth reconsidering it in the present framework as an illustration. We use 
again the conventions of [20]. The Cartan element of the speical s/(2, R) is 
represented by 

b=diag(l,O, -1). (3SOa) 

Choosing z1 = z 2 = 1 in (3.2) the remaining generators of Y are given by 

I+=(! % $ and IL-(: 8 i). (3.50b) 

As in the B2 example, there is a one parameter family of DS gauges, and the 
gauge fixed current in the “DS gauge of parameter p” is written as 

J(x) = I- + U’(x)F1+ P(x)F*, (3.51) 
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where we can take 

Here F, is normalized according to (3.22b). The highest weight gauge corresponds 
to 2p = K, but here we choose to work in the “Wronskian gauge” p = K, which is the 
gauge usually considered in the literature [S-9] (the origin of the name 
“Wronskian gauge” will become clear in Section V). 

Our aim is to find the explicit form of R(a, J) in (3.45) in the Wronskian gauge. 
In this case 

Fi=( 1;~ B !) and FP2=(i i i), (3.53) 

and CL, in (3.42b) now consists of matrices for which only u32 is non-zero, while 
UP2 is trivial. The explicit form of R in (3.45) reads then as 

where the ai are arbitrary functions and the other entries are to be determined by 
the condition that the variation 6,J must leave J “form invariant.” In our case this 
means that 6,J must be of the form 

d,J=[R,J]+tcR’r (3.55) 

since in the Wronskian gauge 

(3.56) 

As is follows from our general result, substituting (3.54) and (3.56) into (3.55) one 
obtains a system of equations which is uniquely soluble in purely algebraic steps for 
both the component functions U-, ...,v2 of R and for the corresponding variation 
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of J. One has to consider (3.55) height by height, starting from below, and easily 
obtains the following formulae for the components of &a, J): 

a1 
u-1 =--Ku;, 

lc 
y1=alU’+azU2--Icy;, 

yo = a; + J [a2 u’ - lca;-J, yl = a2 U2 - I&, (3.57) 

90=2Yo-a;, y*=; u"+Jcy;. 

Before proceeding let us note that R (a2 = 0) implements the induced conformal 
action in the Wronskian gauge, and in fact one can rewrite the above formula as 

R(n,,o,=O,J)=[~a,J+a;p]-~[2~l~~++~~~~~], (3.58) 

which is consistent with (3.21) and (3.19a) describing the conformal action in 
general. The variation of J under the KM transformation bR is found to be 

au’= [al(U’)‘+2a;U’-2Ka;‘] 

+ [2a,( U2)’ + 34 u2 - lc2(a2 Ul)” + day] (3.59) 

and 

6U2 = [al( U’)’ + 3a; U2 + bz2a;U1 - ~~a;“‘] 

+ a2[lcZ( U2)” + $c3U’( U’)’ - $c4( U’)‘“] 

+a;[fK3(U1)2+2K~(U2)'-2K4(Ul)"] 

- 2K4a;(~ly- ;K4a;“~1 + 3,5,;1111. (3.60) 

Now by combining Eqs. (3.36) and (3.37), it follows that 

6U’(x) = 1 j2= dy’aj(y){ U’(x), uqy,>* (3.61) 
j=l,2 O 

holds, so from (3.59) and (3.60) one can read off the Dirac brackets of the DS 
currents, yielding immediately the Poisson brackets of W’ and W* according to 
(3.16). (See Subsection IV.l.) 

Observe that the W2 generator associated to the Wronskian gauge is not a 
primary field with respect to W’ = L. However, it is easy to see that the combina- 
tion 

wz_;(w’)’ (3.62) 
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defines a primary field of weight 3. By investigating the transformation rules 
between the w-bases corresponding to different DS gauges one can prove that 
(3.62) is precisely the w-generator associated to the highest weight gauge. 

Note also that in this example the components of R(a, J) in (3.57) are only linear 
functions of the current components, and as a consequence 6,J is at most quad- 
ratic in J, which implies that the Poisson brackets of the w-generators are also (at 
most) quadratic polynomials. This is not always the case, as can be seen, e.g., in the 
example of BZ. 

We now illustrate the action of the “W-generators on the components of the 
matrix-valued field g(x + , x - ) on this example. All we have to do is to use the 
results (3.57) for (3.54) and substitute this R(a, J) into (3.38). 

Let us discuss the conformal transformations first. For this case, we find 

(3.63a) 

(3.63b) 

al &73i=~g*i-4 g3i (3.63~) 

To simplify (3.63) we can make use of the relation between the currents and the 
matrix-valued fields, (2.6). In this example this gives 

gzi = x Wi, g,i = 2 ajbi, (3.64) 

where 1+9~ = g3i and 8 = a/ax+. Equation (2.6) also gives a differential equation 
satisfied by tji (see Section V), which we will not explicitly use here. Using (3.64), 
(3.63~) simplifies to 

sllC/i=al a$, -a;$i, (3.65) 

which tells us that tii is a primary field with conformal spin - 1, whereas the 
remaining equations in (3.63) describe the conformal transformation properties of 
the secondary fields (3.64). 

We now turn to the genuine -W-transformation generated by iJ2. Using (3.64) 
again, we find 

a2$i=a2 
( 

K2a2-2 ul 

3 ) 
ll/i - lc’a; a*, + 4 a;Iji. 

Equation (3.66) can be thought of as the transformation rule for a “w-primary” 
field under the @“-transformation (for the A2 w-algebra). 

For the algebra B2 we have derived the conformal action in Subsection 111.2. 
Thus it only remains to determine the canonical transformation generated by W2 
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to know the complete set of transformations generated by the W-algebra in this 
case, from which we can of course again (as for AJ read off the W-relations them- 
selves. By applying the algorithm presented above one finds after lengthy but 
straightforward calculations that 

{P(x), o’(y)}*=; ,i: [Pi+*(x)+~2i+1(y)] 
I=0 

x pi+ ‘)(x’ - y’) - jcsp #‘)(x’ - $) 

on MP, where 

9’ = Q;( U*)” + Q; U’U* + Q;( Ul)“” + Q: U’( U’)“, 

+ Q:W’,‘,‘+ Q:(u’,‘, 

F3=Q;U2+Q;(U’)rr+Q;(U’)2, P-5 = Q’u’. 

p=P2+(P-q)2, and q=rc-p. 

Here Q5, Qi are polynomials of the parameter p, given explicitly as 

Q: = -21c2p, Q; = 8p2 - 167cp + 4~*, Q: = 2rc4[P+ 2pq] 

e: = 2~*(3~ - q), Q; = -2rc4[2P+ 3pq], Q:, = 2(q + K) pq* 

Q:= -rc(q+#P-2rc2(2q+ic)pq 

Q5=21c3[(q+~)P+lcpq] 

Q: = 2x*(q + K) P + 2rc2(q + 2~) pq 

Q; = lc[3q2 + 4Kq + 2x*] P + 2K*(q + 2~) pq. 

(3.67) 

(3.68) 

(3.69a) 

(3.69b) 

Observe that unlike for the A,-model, there is now also a cubic term, ( U’)3 in 9’. 
The coefficient Qi of this single cubic term vanishes in the special cases when p = 0, 
K or p = 2~. In other words, the B2 W-algebra is given by quadratic relations in 
that W-bases which are associated to the particular DS gauges of parameter p = 0, 
K or p = 2rc. These “quadratic gauges” could be useful in the quantization of the 
W-algebra, since normal ordering is more complicated when the order of the poly- 
nomials involved gets larger. In contrast, the conformal properties are hidden in 
these gauges and are not as transparent as in the highest weight gauge (which 
belongs to 5p = 2~ in the B, example). 

111.4. Other Convenient Gauges 

In the previous subsections we have discussed the DS type gauges and have 
shown that choosing a DS gauge naturally leads to a corresponding choice of basis 
for the W-algebra, by relating the W-generators to the non-vanishing current com- 
ponents in that gauge. The highest weight gauge plays a particular role because the 
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corresponding w-generators are conformal primary fields (with the exception of 
the conformal generator W’). In the examples of A2 and B, (C,) we have shown 
that it is possible to choose such DS gauges in which the generating relations of the 
w-algebra are quadratic. These gauges are also important because the quadratic 
closure of the algebra simplifies the quantization. In this section we show that such 
gauges exist for the algebras A,, B,, and C,. We will see in the next section that 
they are not available for the rest of the Lie algebras. 

We start by considering A,, i.e., sl(l+ 1, R) and will use the defining representa- 
tion Here (and also for B,, C,, and D, later) we shall use the conventions [20] in 
which the positive and negative step-operators are upper and lower triangular 
matrices, respectively, and the elements of the Cartan subalgebra are diagonal 
matrices. For simplicity, now we choose all 7i in (3.2) to be equal to 1, and then 
the matrix I- reads 

I_ = (3.70) 

The elements of ‘Z$, are matrices with non-zero entries only in the slanted row h 
steps above the diagonal. The image I- (%,,+ i) (for h > 0) consists of those matrices 
in 9?,, for which the sum of the matrix elements is zero. Fixing a DS gauge means 
choosing a single matrix in 9,, for which the sum of the matrix elements is different 
from zero. The simplest choice yields the “Wronskian” gauge defined by 

(3.71) 

This gauge is a special example of the more general block gaugw for which 

0 
J=I_+j=I-+ o o (“> (3.72) 

and U is a p x q block (p + q= I + 1) containing the I DS currents. The 
“Wronskian” gauge is the special case when p = 1 and q = 1. In general these 
“block” gauges are not unique: we are still free to distribute the DS currents in a 
number of different ways along the intersections of the slanted rows with the block. 

Now we are going to show that the w-algebra closes quadratically in any of 
these “block” gauges. According to the results developed in the previous subsection, 
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we can derive the w-relations by determining the field dependent KM transforma- 
tion R(a, J) in (3.45) which implements the induced w-transformations on M,. To 
do this we first rewrite the defining Eq. (3.39) of R(a, J) in the form 

[R, Z-1 +uR’=&T+ [j, R]. (3.73) 

Now, since we know that the unique solution of (3.73) for R = R(a, J) and 6J is 
linear in the infinitesimal parameters of the transformation, i.e., in the functions a, 
introduced in (3.45), and polynomial in the given gauge fixed current I- + j, we can 
expand both R and 6J in powers of the DS currents (j), 

R=R,,+R1+RZ+ ... (3.74) 

&I= (&I), + (&I), + (&z), + . . . 

and solve (3.73) perturbatively, 

CR,, I- I+ J&, = (W, + Cj, R,,- 1l, m = 0, 1, 2, . . . . (3.75) 

Since in the “block” gauge both J and 6J are upper triangular in the block sense, 

(3.76) 

If we write out (3.73) in “block” components it is not difficult to see that the first 
order solution must be of the form 

(3.77) 

where the p x p block A and the q x q block C are further restricted by 

Api= for i<p-1 and cj,=o for i>2 (3.78) 

and that the second order solution is of the form 

with Di, = D,=O, i= 1, 2, . . . . p; j= 1, 2, . . . . q. (3.79) 

For the “block” gauges the expansion stops here and, by the results of Subsec- 
tion 111.3, this implies that the algebra of the w-generators corresponding to any 
DS gauge from the family of block gauges closes quadratically indeed. 

Note that the “Wronskian” gauge is special since D = 0 in this case and thus the 
KM transformation R = R(a, j) is only linear in the DS currents. The algebra is still 
quadratic, since 

(WZ = CR, 3 3. (3.80) 
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For the other matrix algebras, B, and C,, one can define analogous “block” 
gauges by embedding them into appropriate A-type algebras. 

For C, -sp(21, R) we can use the 21-dimensional defining representation. We 
write the C, matrices in terms of four 1 x 1 square blocks. In this notation the 
symplectic metric is given by 

G= 
’ 

(3.81) 

where the only nonvanishing entries of E are in the second diagonal (the diagonal 
from bottom-left to top-right), and these entries are all 1. The elements of the Lie 
algebra are represented by matrices of the form 

K= 
A B 

( ) c -1 ’ 
where B=B,c=C (3.82) 

and -means reflection with respect to the second diagonal. 
Positive (negative) step-operators are again upper (lower) triangular matrices 

and elements of the Cartan subalgebra are diagonal. By a convenient choice of the 
(irrelevant) parameters rir I- is now given by the 21 x 21 matrix: 

(3.83) 

It has 1 1 entries and (I- 1) ( - 1 )‘s. 
The “block” gauges, in which the algebra closes quadratically are characterized 

by 

, (3.84) 

where o= U and it has non-vanishing components along every second slanted row, 
corresponding to the exponents of this algebra. 

Finally, for B, -so(l+ 1,l) we take the (21+ l)-dimensional vector representa- 
tion. In a 3 x 3 block matrix notation corresponding to the partition I+ 1 + 1 the 
Lorentzian metric is 

(3.85) 



110 BALOG ET AL. 

and the elements of the Lie-algebra are of the form 

where 8= -B, i?= -C. (3.86) 

The matrix I_ is again similar to (3.83) but it is now a (21+ 1) x (2Z+ 1) matrix 
and has 1 upper entries 1 and 1 lower entries (- 1). The “block” gauges for this 
algebra are defined by 

(3.87) 

where 5 = -b and the DS currents are again distributed along every second slanted 
row. 

An other convenient gauge is what we will call the diagonal gauge. It is defined 
by 

J(x) = I- + 1 Oi(X)Hi. 
i=l 

(3.88) 

(Here we choose the {Hi} to form an orthonormal basis for the Cartan sub- 
algebra.) Note that this is a new type of gauge fixing, not a member of the family 
of the DS gauges, but it will turn out to be very useful in applications and it is most 
useful in the quantum theory. Before we start discussing the gauge choice (3.88) in 
detail, we mention two difficulties connected with it. We will illustrate these 
difficulties on the simplest example, ~42, R). 

In this case the gauged fixed current in the diagonal gauge is parametrized by a 
single real field O(x), 

Jdiag = y “, 
( 1 

and it is easy to see that the transformation from the “Wronskian” gauge 

J 0 WI 
Wren = l o 

( ) 

(3.89) 

(3.90) 

to the diagonal gauge amounts to solving the Riccati equation 

t12 - Ice’ = u. (3.91) 

Now, if we require all fields to be periodic and integrate the Riccati equation over 
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the period, the derivative term drops out and we see that (3.91) has no solution 
unless 

I 
2n 

U(x) dx’ 20. (3.92) 
0 

In other words, the diagonal gauge can only be reached from that part of the phase 
space where (3.92) is satisfied. 

A related difficulty is that when the Riccati equation can be solved, its solution 
is not unique, it in fact has two independent solutions. (For an arbitrary Lie 
algebra, the number of independent solutions of the analogous equations is equal 
to the order of the Weyl-group.) 

However, note that when available the diagonal gauge is locally well defined (the 
ambiguities mentioned above correspond to finite gauge transformations) and 
therefore the corresponding Dirac brackets are also well defined. Since the 
w-algebra is determined by polynomial relations, its structure can be analysed by 
restricting the considerations to that part of the phase space where the diagonal 
gauge is available and we will see that this is often convenient. 

Expanding the general KM current, J, in the Cartan-Weyl basis as 

(3.93) 

the set of constraints defining the diagonal gauge can naturally be divided into two 
parts, 

x= 5 

0 i . 

(3.94) 

The diagonal gauge is defined by constraining the l-V by imposing the original 
constraints (2.8) and, in addition, setting the 5” to 0. Since on the corresponding 
constraint surface 

the C operator, whose inverse enters the formula for the Dirac bracket can 
schematically be written as 

(3.96) 

where B = { <, [}. N ow the Dirac bracket of any two quantities u and u takes the 
form 

(4 u>* = {u, u> + (4 r> B-l{& u} - (24 r> rl{r, u>. (3.97) 

595/203/1-S 
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The important property of the diagonal fields 0,(x) that makes the diagonal gauge 
extremely simple is that they (weakly) commute with the additional constraints [“: 

{ei(x), i} %O. (3.98) 

Because of (3.98), the Dirac bracket of two diagonal currents is the same as their 
original KM Poisson bracket: 

{ei(x), ej(Y))*x {ei(x), 8j(Y)}=K:6ij6’(x1-Y1). (3.99) 

In other words, the diagonal components of the current are a set of free fields. 
Therefore in the diagonal gauge the w-generators are given as differential poly- 
nomials in free fields and these differential polynomials are simply obtained by 
restricting the full (gauge-invariant) differential polynomials to the “diagonal 
currents” of the form (3.88). This free-field representation of the w-generators is 
called the Miura-transformation and has been used to quantize the theory [5]. 

IV. CASIMIR ALGEBRA 

IV.l. Leading Terms and Casimir Algebra 

We have already seen that any DS gauge defines a basis of the w-algebra, and 
that there is a one-to-one correspondence between the conformal weights of the 
w-generators associated to the highest weight gauge (or the scale dimensions of the 
w-generators associated to any DS gauge) and the orders of the independent 
Casimirs of the underlying simple Lie algebra. In this section we shall elaborate on 
this connection further, by showing that the leading terms of the q-generators (i.e., 
terms without any derivatives) are always Casimirs (restricted to P). Then we 
demonstrate that the Casimirs themselves form a polynomial algebra under the 
Poisson bracket, which is a truncated version of the full w-algebra. This Casimir 
algebra, in its quantum version, has been studied in [15]. 

We shall denote the leading terms of the q-generators, Wj, by W{. Since these 
leading terms contain no derivatives, they are invariant under rigid gauge transfor- 
mations, that is 

Wi(JA) = W&(J) for A E N, where JA = AJA -’ 

for any constrained current (JE P). On the other hand, an arbitrary Casimir C’ is 
a group-invariant polynomial, that is, for any KM current J and an arbitrary BE G 
one has 

Cj( JB) = Cj( J), where JB = BJB-‘. 
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First we want to show that the leading terms of the V-generators are restricted 
Casimirs, or in other words that 

for some Cj. 

w;(J) = Cj(J), JEP (4.1) 

To do this we shall use the theorem of Chevalley from the theory of invariant 
polynomials [18], which we now recall. This theorem states that there is a one-to- 
one correspondence between the Casimirs and the Weyl-invariant polynomials on 
the Cartan subalgebra, and that the correspondence is simply given by restriction. 
That is, first, if Cj(J) is an arbitrary group invariant polynomial (Casimir) on ‘9, 
then its restriction to the Cartan subalgebra, C’(H), is a Weyl-invariant polyno- 
mial. (We shall denote the Cartan subalgebra by 2 and the restriction of any func- 
tion to 2 by an overbar.) Conversely, from any given Weyl-invariant polynomial 
on 2, a corresponding full group invariant can be reconstructed in a unique way. 

For later use we also recall that the uniqueness of the reconstruction is proven 
by “diagonalization.” First note that for any Lie algebra element J in the compact 
form of 9 there exists a group element g E G that “diagonalizes” J: 

(The use of the compact form is justified here since the problem is purely algebraic.) 
Using the group invariance of the Casimir Cj we see that 

Cj(J) = Cj(Jg) = C’(H(J)) = C’(H(J)) 

so cj determines the full Casimir Cj uniquely indeed. 
By using Chevalley’s theorem, (4.1) will follow if we can prove that the restriction 

of W;(J) to currents J in the diagonal gauge (cf. (3.88)) is a Weyl-invariant polyno- 
mial of the Cartan components of J. To do this we only have to show that for any 
“diagonal” constrained current J it its possible to find such rigid gauge transforma- 
tions A EN, whose action on the Cartan components Oi of J coincide with the 
action of the Weyl-group on the Bi. 

To show this, let us choose a simple root ak and consider the action of the finite 
gauge transformation 

A=ea with a = wEaa (4.2a) 

on a constrained current JE P, 

J+ J’“‘=e”Je-“= J+ [a, J] +f[a, [a, J]] + ..., (4.2b) 

where o is an arbitrary real parameter. Parametrizing the constrained current JE P 

i=l i= 1 rp 
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where cp runs over the set of positive non-simple roots, we find (remember that I- 
is given by (3.2)) that the components of J transform under (4.2) as 

r~“‘=ii-lak12 rk j 2w 6’ c (aj, ak)8j -m2 dikzk 

where the precise form of the coefficients !PVj and GVprpP is irrelevant for our purpose. 
Now we fix JE P and choose the parameter w  to be 

so that the set of components (ci, [,) transforms homogeneously as 

p = c. IT it’ = lrp + C ycpjjrj + C @rprp'lrp', 

i 9' 

which implies that the transformation (4.2) applied to the “diagonal” current 

Jdiag = I- + i OiH,< 
i=l 

takes it into another current which is also in the diagonal gauge. Moreover, with 
this choice of o the action of the gauge transformation A = ea (4.2a) on the the 
Cartan components Bi of this particular diagonal current is 

e!“‘=ei-lak12 rk j  2.6- c (aj, ak)ej, 

which is precisely the same as the effect of the Weyl-reflection corresponding to the 
simple root ak on the Cartan components 13~. This implies that every Weyl-transfor- 
mation of the Cartan components of the diagonal currents can indeed be implemen- 
ted by rigid gauge transformations. (Since the Weyl-group is not a subgroup of ZV, 
the particular rigid gauge transformation A which “implements” a given Weyl- 
transformation on the components 6i of a “diagonal” current Jdiag must depend on 
the particular current on which it acts, and is really field-dependent according to 
the above construction.) Since the leading term Wi is invariant under rigid gauge 
transformations, it follows that its restriction $76 to the diagonal gauge is a Weyl- 
invariant polynomial of the current components Bi. Chevalley’s theorem then tells 
us that @‘& is the restriction of a uniquely determined Casimir C-’ to the diagonal 
currents (note that I- has no contribution in C’(Jdiag) because of the neutrality of 
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the group invariant Cj). To finish the proof of (4.1) one has to show that the 
leading term W{ itself is the restriction of the same Casimir Cj to P. This last step 
follows from the fact that Wj, and the restriction of Cj to P are the same (namely 
I?‘i) when restricted to “diagonal” currents, since an N-invariant on P can uniquely 
be reconstructed from its Weyl-invariant restriction to the space of diagonal 
currents. (The uniqueness of this reconstruction can be shown by an argument 
similar to the one that was used in the case of the Chevalley theorem.) 

It is not hard to see that the Casimirs { Cj} corresponding to the leading terms 
of a w-basis { Wj} form a basis in the ring of group-invariant polynomials. (It is 
enough to prove this for a w-basis constructed by means of some DS gauge, but 
in this case these I Casimirs are independent even if restricted to the gauge section 
M,, where they simply coincide with the 1 DS currents { Uj}.) So we can associate 
a Casimir basis to any w-basis. On the other hand, it is also possible to choose 
some convenient basis for the Casimirs first, and then construct a w-basis in such 
a way that the leading terms of the w-generators are the given set of Casimirs. For 
example, for the case of A, we can choose the Casimirs as 

1 cj=- Tr Jj+’ 
j+l ’ 

j = 1, 2, . . . . 1. 

Then we can define w-generators corresponding to these Casimirs by the formula 

1 wj=- Tr jJ+’ 
j+l ’ 

where 

is the representative of the gauge orbit of the constrained current JE P in some 
particular DS gauge. (Remember that both f~ M, and the gauge transformation A 
are uniquely determined by JE P. ) It follows that we have 

1 wi=- 1 1 =- . . . 
j+l 

Trjifl=- 
j+l 

Tr(J+ KA-‘A’)‘+’ 
j+l 

TrJj+l + 3 (4.4) 

that is the leading terms of the Wj are indeed the Casimirs Cj. It is also easy to 
see that the { Wj} associated by this method to a set of independent Casimirs form 
a basis of w-algebra. (The w-generators associated to a given Casimir by means 
of different DS gauges differ in their derivative, non-leading terms.) 

In the SL(3, R) example, choosing the “Wronskian” gauge 
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we have 

W’=+Trj* and W2=$Trj3. (4.5) 

By using the results of Subsection III.3 on the A2 example we can derive the 
relations 

{ W’(x), W’(y)} = lc( W’)’ (x) 6 + 2lcW’(x) 6’- 2x3 d”’ 

{ W’(x), w*(y)} = 2K( W2)’ (x) 6 + 3KW2(X) 6’ 

- I?[ W’(x) S]” + x4 cYU’ 

{w*(x), w*(y)} = 7c[i( W’)’ w’ + rc( W2)” - $c’( W’)l”](x) 6 
(4.6) 

+ 7c[S( w’)* + 2K( W2)‘- 2d( W’)“](X) 6’ 

- zK3( ~1)’ tx) g/f - g3 w’(X) gllf + iKs gv’u 

where 6 = 6(x’ - y’) and x0 = y”. On the other hand, it is not difficult to verify that 
the corresponding Casimirs 

C’=$TrJ’ and C2=iTrJ3 (4.7) 

satisfy the following algebra under Poisson bracket, 

{C’(x), C’(y)} = K(C1)’ (x) 6 +2&(x) 6’ 

{C’(x), C’(y)} = 2K(C2)’ (x) 6 +3&*(x) 6’ (4.8) 

(C’(x), C’(y)} = K[j(C’)’ C’](x) 6 + lc[f(c’)*](x) 8, 

which is nothing but the leading term (in rc) of the full w-algebra for X(3, R). 
In fact we will show that in general, if the w-generators W’ and Wj satisfy 

{W’(x), W’(y)} = c f”( W)(x) 8’A)(X’ - y’), 
A 

where the “structure functions” f”(W) are differential polynomials in { Wj}, then 
the corresponding Casimirs C’ and Cj satisfy the simplified (truncated) algebra 

V’(x), Cj(Y)) =f@)(x) s’+fy(C)(x) 4 (4.9a) 

where f: and fy are the leading terms off’ and j” in the number of derivatives, 
which are 0 and 1, respectively. 

To show this, let us first note that from the form of the KM Poisson brackets 
and group-invariance of the Casimirs it already follows that the commutator (4.9a) 
must be of the form 

{C’(x), CW} = g&q(x) 6’ + gyv, J’)(x) 6 (4.9b) 
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with some group-invariant functions g,!, and gy. (gy is polynomial in J, but is linear 
in J’.) Now we have to demonstrate that 

and ‘dv, J’) =fWV)). (4.10) 

We will make use of the diagonal gauge and the Chevalley theorem once more. In 
the diagonal gauge the leading terms of W’ and C’ coincide and therefore we have 

and gwf, H’) =f~(~W)). (4.11) 

Now applying the Chevalley theorem to g,!,, the first equation in (4.10) follows from 
the first one in (4.11). Before one is able to apply the theorem also to gy, one first 
has to generalize it for the case of operators containing one derivative. This is 
possible and the proof is basically the same as for operators without any 
derivatives. Let us define the group invariant Sy(J, J’) by 

gw, J’) =f:(w)) + qv, J’). 

From the second equation in (4.11) we see that $y(H, H’) vanishes, but then the 
full 6y(J, J) must vanish too since 

q(J, J’) = cq(H(J), (J’)q = Lq(H(J), (H’)g) = cq(H(J), (H’)~) = 0, 

where the second step follows from the neutrality of the group-invariant 67. 
This way we have shown that the set of Casimirs closes to form a polynomial 

algebra under the Poisson bracket and that this algebra is a truncated version of 
the corresponding w-algebra. Since the completely local Casimirs (Ci} are more 
elementary objects than the { Wi} which contain derivatives as well, one can ask 
wether the closure of the Casimir algebra can be shown without any reference to 
the more complicated w-algebra. In other words, one has to show that (4.9a) holds 
with some functions fh and fy. It is trivial that gh in (4.9b) depends on J only 
through the Casimirs, since this merely expresses the fact that the { Ci} form a basis 
for the completely local group-invariants. 

To show that gy is also a function of the Casimirs we go to the diagonal gauge 
again. In this gauge the restriction of gy must be of the form 

g:(H, H’)= i A$;, (4.12) 
,=I 

where the { ei} are coordinates with respect to some basis in the Cartan subalgebra 
and the coefficients {A, > can be considered as an I-component vector in the Cartan 
subalgebra and can be expanded as 

dCj( H) Ai =c Biae 
I 

(4.13) 



118 BALCKi ET AL. 

simply because the 1 vectors {aCj/aO,} are linearly independent. (This is the 
analytic expression of the fact that the I invariants {Cj> are functionally 
independent.) 

Substituting (4.13) into (4.12) we find 

g;(H, H’) = c Bj Bj[c’(H)]’ 
i 

and we see that the coefficients Bj must be Weyl-invariants: 

&(H, H’) = I- ’ B,(c(H))[cj(H)]‘. 
j hj+l 

Now using the generalized Chevalley theorem for gy again we have 

gw, J’) = 1 l - B,(C(J))[Cj(J)]‘. 
j hj+l 

After this digression we return to the question of the quadratic closure of the 
w-algebra. We have shown in the previous section that the w-algebras for A,, B,, 
and C, are quadratic in a suitably chosen basis. As an application of the relation 
between the w-algebras and the algebras of the corresponding Casimirs we now 
prove that no such basis exists for D, and the exceptional algebras. In fact we show 
this for the Casimir algebras, from which the analogous result for the w-algebras 
immediately follows. 

Let C, be the highest order Casimir, of order H (see Appendix A), and let us 
consider the Poisson bracket of C, with itself, 

{G(x), GAY)} =rn-,(c)(x) 6’+ tG-*(c)(x) 6. (4.14) 

(Here the two structure functions are not independent of each other due to the 
antisymmetry of the Poisson bracket.) The structure function T,,-,(C) is a 
Casimir of order (2H - 2) and by inspecting the list of group-invariants for the case 
of the exceptional groups it is easy to see that it can never be expressed as a 
quadratic function of the basic Casimirs (Cj} for these groups. 

The situation for D, is more complicated. Here we can show that the set of 
Casimirs (Cl, C2, . . . . C’> defined by 

det(l-&J)=l- i $‘C”, 
n=l 

(4.15) 

where the determinant is taken in the 21-dimensional vector representation of D,, 
forms a quadratic algebra under Poisson bracket. (This is actually the same algebra 
as is formed by the corresponding Casimirs of the B, and C, groups.) However, as 
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is well known, (4.15) is not a correct choice of basic Casimirs for DI, the latter is 
given by the set {Cl, C*, . . . . C’- ‘; C, = @}. By introducing the “spinorial” 
invariant C,, we destroy the quadratic property of the algebra. We find that f,,- 6, 
the structure function in the commutator of two highest Casimirs C’-’ is given by 
(see Appendix C) 

r 41&G= -12K(c,)2c’~3-41cc’-1c’-2 (4.16) 

which is indeed cubic for I > 3. 

IV.2. Explicit Casimir Algebras 

In Subsection IV.1 we have shown that the Casimir operators, C”, form a closed, 
polynomial algebra under Poisson bracket, which is a truncated version of the 
w-algebra. These Casimir algebras are interesting in their own right and they are 
also useful for studying the related w-algebras. In this subsection we exhibit their 
structure in some detail. 

First, it is obvious that the Casimirs are conformal primary fields with respect to 
the Sugawara energy-momentum tensor. Next we want to determine the non-trivial 
Poisson bracket relations describing this algebra. What we are actually going to 
calculate is the Poisson bracket of the generating polynomials 

A(p, x) = det(1 - pJ(x)) = 1 - 1 ,nLn+ ‘Cn(x) 
?I=1 

(4.17a) 

and 

B(p,x)=det(l-&J(x))=l- i $C”(x) 
Pl=l 

(4.17b) 

for the 1 independent Casimirs C’, . . . . C’ of the A, and B, (C,) algebras, respectively. 
One first observes that the overcomplete set of group-invariant polynomials 

Q”(x) = i Tr J”(x), n = 2, 3, . . . (4.18) 

which are related to the 1 independent Casimirs C” via 

Cn--l= ---exp 
,'! ;n (-.I prQr)I,-; for Al, 

C"=-ld"exp 
n! dp” )I 

, 
for B,, C,, 

p=O 
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satisfy the Poisson brackets (see Appendix C) 

{en(x), Q”(r)}=+-2)Qp-‘-;e”-Q-l] (x)8 

+K (m-l)(QP-2)‘-;Q”-1(Q-~1)’ (x)6, (4.19) 
[ 1 

where 6 stands for 6(x’ - y’) as before, p = n + m, q = (n - l)(m - l), and N is the 
dimension of the defining representation. Note in particular that for the B and C 
algebras both n and m must be even integers (since for odd n the Qn vanish identi- 
cally) and, as a consequence, the quadratic terms on the right hand side of (4.19) 
are automatically absent. 

However, formula (4.19) is only the first step in finding the explicit Casimir 
algebras. For example, in the case of A, one obtains 

and only after expressing Q” in terms of the independent Casimirs Q* and Q’ via 
2Q” = (Q’)’ does one find the result (4.8) (note that Q2 = C’ and Q3 = C* there). 
More generally, if one computes the Poisson brackets of the highest Casimirs for 
an algebra of rank I, one has to use the characteristic polynomial 0(1/2) times to 
express the right hand side of (4.19) in terms of the independent Casimirs. Clearly 
this method becomes soon cumbersome and another algorithm is needed. 

As a first step to calculate the Poisson bracket of the generating polynomial (with 
itself) we expand its logarithm, 

log det( 1 - pJ(x)) = - f pL”Q”(x) 
n=2 

(4.20) 

and use (4.19) to calculate the Poisson bracket of log det( 1 - ,uJ). This then allows 
for the computation of the Poisson brackets of the determinant. After some algebra 
one finds that this Poisson bracket can be reexpressed in terms of the determinant 
and its derivatives. For the details of the derivation we refer the reader to 
Appendix C. The final results are 
A [ algebras: 

Lw x), A(v, Y,} = w2v2 ( &p”-“p’-& ) a, a, 44 x) 4v, x) 6’ 

+w2v2 wa,G--~ ( a, a, ) 44 XI ax4v, 4 6 
2 2 

+ ,,““:,2 - (-4~~ XI a+m, X) - 4, X) a,44 4) 6, (4.21) 
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B,, C, algebras: 

{B(P, xl, NV, Y,> = 4w & (~8, - ~8,) B(pL, x) B(v, x) 6’ 

’ + 4IcpJ(Vd, - /la,) - (Bh x) W(v, -x)1 6 
P--v 

+ 2Kw (p - v)* ?..-% (B(p, x) d,B(v, .x)- B(v, x) d,B(p, x)) 6. 

(4.22) 

The algebra of the Casimirs can now be computed by inserting the expansions 
(4.17) into both sides of (4.21), resp. (4.22), and comparing coefficients in the 
resulting polynomials in p and v. One sees, in particular, that with respect to the 
Casimirs defined by the determinant the algebras close always quadratically. 

For example, for the highest Casimirs of A,, 12 2 one obtains 

{C’(x), C’(y)} = m,(x) 6’ +; a;(x) 6 

(4.23) 

al = -2C’C’-*8(1- 3) + 

and for the highest Casimirs of B, and C, with 12 2 one finds 

{C’(x), C’(y)} = -4k-ctp ’ 6’ - 2K( c’c[- I)’ 6. (4.24) 

The corresponding results for the lower Casimirs are presented in Appendix C. 

V. DIFFERENTIAL AND PSEUDO-DIFFERENTIAL OPERATORS AND TODA FIELDS 

The aim of this last section is to demonstrate that the differential and pseudo-dif- 
ferential operators studied in [lo], and taken as a starting point for the quantiza- 
tion of w-algebra in [IS], arise naturally in our framework. These operators appear 
in the differential equations satisfied by the gauge-invariant components of the 
WZNW field. 

Let us recall that the solution of the field equations for the group-valued field g 
is 

with 

&+3x )=gL(x+)~gRw) 

g;g;‘=J and g;‘gk=S, 

(5.1) 

(5.2) 
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where the currents J and 2 are subject to the constraints (2.8). (In this section prime 
means 2~ a/&‘.) We will consider the simplest case, SL(n, R) first, and concentrate 
on the left-moving part of the theory. (We omit the subscript L.) 

In order to reconstruct the group-valued field g(x+) from the current J(x+) 
(satisfying the constraints (2.8)), one has to solve the set of linear differential 
equations 

g’ = Jg. (5.3) 

Obviously this is a separate set of equations for each column-vector of the matrix 
g, which are of the form 

&i gli 

d2i !:I i.1 = (I- +j) g;i 

gki gni 

(5.4) 

Solving (5.4) is the simplest in the “Wronskian” gauge, (3.71). In this gauge one can 
easily express all components of g in terms of the bottom components, g,i, denoted 
by 9i> 

g(n- 1)i = $I 

g(n-2)i= *I 
(5.5) 

leading to a single nth-order differential equation satisfied by tii, 

n-l 
$I”)= 1 uj*;n-j-l). (5.6) 

j=l 

The group-valued field g can now be built from the n independent solutions of 
(5.6), 

9 (5.7) 

where the set of solutions {ei} must satisfy the Wronskian constraint (hence the 
name of the gauge): 

det g= 1 (5.8) 

in order that the matrix g be an element of the group SL(n, R). 
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We note that if the DS currents {Vi} are regular functions then so are the solu- 
tions {tii} of the generalized Schrijdinger equation (5.6). By combining g, given by 
(5.7) with the similarly constructed right-moving solution g,, the resulting WZNW 
field g(x+, x-) is also regular, as are the globally defined Toda fields, being sub- 
determinants of the latter (according to (2.23)). Furthermore, if the w-generators 
corresponding to a given (say, the “Wronskian”) DS gauge are given by regular 
functions for a Toda solution, then by this procedure one can always construct a 
regular WZNW representative of that Toda solution, whether or not the solution 
appears to be regular in terms of the traditional local Toda variables, 4”. 

We also remark that once the solutions of the “right handed” analogue of (5.6), 
{xi}, are known, then as a consequence of (2.24) and (5.1), the Toda fields can be 
expressed in terms of the { $}‘s and the { x}‘s as 

where 

(5.9) 

*~x=c*i% *‘.X=C II/I.Xi, (5.10) 
i i 

and so on. In fact Eq. (5.9) was the starting point of the analysis of Toda theory 
in [S]. Without going into details we note that the above results can easily be 
generalized for the B, and C, series. 

So far we have studied (5.4) in a definite DS gauge. Let us now try to solve it for 
g without gauge-fixing the current J. It is easy to see that starting from the bottom 
row, it is always possible to eliminate all higher components of g successively, even 
without any gauge fixing. This elimination leads to a differential equation of the 
form 

n-1 
9ytii =ayi- 1 W’[J(x’)] an--l-lljj=o. (5.11) 

j=l 

Here a = rc a/ax+ and the coefficient functions ( Wj} are automatically obtained as 
some differential polynomials in the current components. Moreover, they are gauge 
invariant, since the original equation (5.3) was gauge-covariant and the bottom 
components g,, = tii are gauge-invariant (with respect to left-moving upper 
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triangular gauge transformations). This implies that the Wj’s in (5.11) are nothing 
but the w-generators associated to the “Wronskian” gauge, since they reduce to 
the DS currents { Uj} in this gauge. 

To summarize, if the w-densities associated to a DS gauge (here the 
“Wronskian” gauge) are known, then one can reconstruct the corresponding 
WZNW solution by solving (5.2) for g = g, .g, in that DS gauge. In the 
reconstruction procedure one obtains a higher order differential equation (here 
(5.6)) satisfied by the gauge-invariant (bottom row) components of g, (and an 
analogous equation for the last column of gR). The same equation can also be 
derived from (5.4) by elimination without any gauge fixing. Since the resulting dif- 
ferential equation is gauge-invariant, one can read off the explicit formula of the 
w-generators corresponding to the given DS gauge by comparing the coefficients 
in the differential equations obtained with and without gauge-fixing. By a similar 
argument, one can also establish the transformation rules relating the w-bases 
corresponding to different DS gauges. 

The elimination is also simple in the diagonal gauge. In this gauge 

8, 0 ... 0 
0 

j= ! 0 y2 , 
.* 

'.I' . 
: 

(j 0 . . . 0, 

i (5.12) 

and the differential operator takes the form 

a?’ = (a - e,)(a - e,). . . (a - en). (5.13) 

By rearranging this product as a sum corresponding to (5.11), one can read off the 
expression of the w-generators in this gauge. Note that the diagonal fields (5.12) 
are not independent, because 8, + e2 + . . . + 8, = 0. This is the original form of the 
Miura-transformation [21] and the operator (5.13) is the starting point for the 
Lukyanov-Fateev free-field construction of quantized w-algebra [5]. 

The derivation of the gauge-invariant higher order differential operators and the 
reconstruction of the matrix-valued field g from the constrained currents (or from 
w-generators) proceeds analogously for the Lie algebras B, and C,. The resulting 
gauge-invariant differential operators are of order (2n + 1) and (2n), respectively, 
according to the dimensions of the defining representations. Due to the restrictions 
(3.86) and (3.82), the differential operators 9LB) and 9:‘) are (formally) antiself- 
adjoint and selfadjoint, respectively. Without going into detail, we give these 
operators in the factorized form corresponding to the diagonal gauge: 

9y = (a - e,)(a - e,). . . (a-e,) a(a + e,) . . . (a + e,)(a + e,) (5.14a) 

9(c)= (a - e,)(a - e,) . . . (a - e,)(a + e,). . . (a + e,)(a + e,). n (5.14b) 

Here the 0;s are independent free fields. 
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The case of the algebras D, is more complicated. As an example, let us consider 
D, first. We use the six dimensional vector representation and go to the diagonal 
gauge, where (with a convenient choice of the ri) 

e,o 0 0 0 0 
18, 0 0 0 0 

J=I- +j= 
018, 0 0 0 

. 
(5.15) 

0 0 -1 -1 -e* 0 

If we write out (5.4) in components we have (suppressing the index i) 

g5= -(a+e,)g, (5.16a) 

g3 + g4 = -(a + 0,) g5 (5.16b) 

g2 = (8 + 03) g4 (5.16~) 

g2 = (8 - 0,) g3 (5.16d) 

g, = ca-ei)g2 (5.16e) 

O=(d-fl,)g,. (5.16f) 

From (5.16) we see that the elimination is blocked here after the second step, since 
the combination g, - g, never occurs on the left hand side. On the other hand, its 
derivative can be expressed, combining (5.16~) and (5.16d), as 

ah3 - g4) = e3k3 + g4). (5.17) 

One can go on with the elimination by integrating (5.17) (formally) using the 
“antiderivation” symbol a ~ ‘: 

One then finds 

(g3-g4)=a-‘e,(g,+g,). (5.18) 

22p= (a - e,)(a- e,)(a- 8, a-le,)(a + e,)(a +e,) 

= (a - em - e,)(a - e,) a-1(8 + e,)(a + e,)(a + e,). (5.19) 

Similarly, by performing the elimination in the (2n)-dimensional vector representa- 
tion, one can associate a pseudo-differential operator to any D, algebra: 

~(D)=(a-e,)(a-e,)...(a-e,)a-l(a+e,)...(a+e,)(a+e,). (5.20) ?I 

This not only shows that it is impossible to obtain a differential operator for D, in 
the vector representation, but from the example of D, - A, we also see that the type 
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of pseudo-differential operator depends on the representation in which (5.4) is 
taken. (For D3 there is an ordinary differential operator corresponding to the four 
dimensional representation, but this is the spinor of D3.) 

For the case of A,, B,, and C, what makes the elimination simple is that the 
matrix I_ (see (3.70) and (3.83)) has non-zero entries immediately below the 
diagonal and only there. Since I- is the negative step-operator of the special 
s1(2, R) subalgebra Y introduced in Subsection 111.1, this fact means that the 
defining representations of these algebras are still irreducible with respect to this 
sl( 2, R) subalgebra. 

For D,, the vector representation is reducible with respect to Y with branching 
2n = (2n - 1) + 1. This is why one has a pseudo-differential, rather than a differen- 
tial, operator after eliminating the higher components from the system of first order 
differential equations (5.4). (The spinor representations of D, are even worse from 
this point of view, except for n = 3.) 

Turning to the exceptional algebras, we find that the seven dimensional represen- 
tation of G2 is irreducible with respect to Y’ and therefore the elimination for G2 
will result in a 7th order differential operator (see Appendix B). The corresponding 
branching rule for F4 is [22] 26 = 17 + 9, so in this case we have a pseudo-differen- 
tial operator, containing one integration. 

Finally, for E,, E,, and E, the branching rules are [22] 

E6: 27= 17+9+ 1 

E,: 56=28+18+10 (5.21) 

E,:248=59+47+39+35+27+23+15+3 

and therefore in these cases the elimination leads to pseudo-differential operators, 
containing 2, 2, and 7 integrations, respectively. 

VI. CONCLUSIONS 

In this paper we have shown that extended conformal algebras, w-algebras arise 
naturally in the constrained WZNW formulation of Toda field theories. Our main 
results are the following: 

We have given an ambidextrous generalization of the usual gauged WZNW 
models to derive Toda theories. Using the embedding WZNW phase space, we have 
shown how to implement the action of the w-algebra generators as certain field 
dependent Kac-Moody transformations. This led us to a powerful algorithm to 
calculate the w-algebra relations. Using this algorithm we calculated the so far 
unknown Poisson bracket algebra of w(G2) explicitly. 

We exhibited a particular basis where all the w-generators are conformal 
primary fields. We have also shown that for the A, B, C series there is always a 
basis in which the w-algebra closes quadratically, and that is not true for the rest 
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of the simple Lie algebras. Finally we have proved that the leading terms of the 
w-generators (i.e., terms without derivatives) are restricted Casimir operators. We 
exhibited the Casimir algebra relations in detail for the A, B, and C series and have 
given a general proof of closure of their Poisson bracket algebra for any simple Lie 
algebra. 

As found in [15] the quantum version of the Casimir algebra does not close in 
general (it has been shown to close for SU(3) only when the level is equal to one) 
hence it is natural to ask whether an extension of the w-generators to the full Kac- 
Moody phase space (in the sense discussed in the introduction of Section III) exists, 
with the full, unrestricted Casimirs as leading terms. If one could find such an 
extension it would make it possible to associate a representation of the w-algebra 
in terms of unrestricted Kac-Moody generators to any Kac-Moody algebra. As 
such an extension would also be a deformation of the Casimir algebra, it could 
possibly survive quantization. This problem is certainly very interesting as it would 
also clarify the origin of -W-algebras, without making reference to any particular 
model. A detailed investigation of such deformations of the Casimir algebras is out- 
side the scope of this paper. After some preliminary investigation of the problem we 
found that at least for A, one cannot extend the w-algebra to the whole phase 
space of the (chiral) Kac-Moody currents, at least with the assumption of the W”s 
being differential polynomials with unrestricted Casimirs as leading terms. 

However, by giving up the polynomial nature of the WI’s we have found such an 
extension of the generators of the w-algebra for A,. In fact this result can be 
generalized for an arbitrary A, algebra. This problem is under investigation. 

APPENDIX A: CONVENTIONS 

Here we give our conventions and present some formulae which are used in the 
paper. 

Space-Time and Poisson Brackets. 

roe= -‘l1,=1, x+ =$(x0*x1), a, =a,*a,. (A.11 

We use equal time Poisson brackets and spatial d-distributions. At fixed x0 all 
quantities are supposed to be periodic with period 27r. Prime means “twice spatial 
derivative” everywhere, even on Dirac 6’s. Note that this is equal to a+ on 
quantities depending on x through x+ only. 

Conformal Primary Fields. The left-moving conformal transformations are 
generated by the conserved moments 

Q, = 11’ dx’ a(x) L(x) (A.2) 

of the Virasoro density L(x) = 0 + +(x), for any periodic test function a(x) for 

S95!203/1-9 
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which a _ a(x) = 0. A conformal primary field Y of left conformal weight A trans- 
forms as 

(6, WY) = - (Qm Y(Y)) = 4~) 8, Y(Y) + A . WY) a+ U(Y). 

If a _ !P = 0 then this is equivalent to 

(A.3) 

{L(x), Y(‘(y)},xo~yo=A~Y(x)B’(x1-y1)+(A-1)~(~+Y(x))~(x1-,‘). (A.4) 

Lie Algebras. Let SC be a complex simple Lie algebra, @ the set of roots with 
respect to some Cartan subalgebra, and A a set of simple roots. There is a Cartan 
element H, associated to every cp E @J and the Cartan matrix Kas is given as 

(A-5) 

where Tr is the usual matrix trace multiplied by an appropriate normalization con- 
stant, which ensures that Ialong 1 2 = 2. For example, for the defining representations 
of the orthogonal Lie algebras B, and D, this normalization constant is f, and it is 
1 for the defining representations of A, and C,. For any positive root CI E @+ we 
choose step operators E,, so that we have - 

K = CL ELI, Tr(E,.EB)=~G,~,,Tr(E,.HR)=O (A.61 

for a, jI E @, and also 

CH,, &I = &wf$, for cr,/3~A. (A.7) 

In our Cartan-Weyl basis H, (a E A), Ekv (cp E Cp + ) all the structure constants of 
$ are real numbers. Throughout the paper we use the maximally non-compact real 
form 3 of Ce, for which the Cartan decomposition is valid without complexification. 
We in fact take 3 to be the real span of the Cartan-Weyl basis of 4. The maxi- 
mally non-compact real forms of A,, B,, C,, and D, are (up to isomorphism) 
sl(l+ 1, R), so(l, I+ 1, R), ~~(21, R), and so(l, I, R), respectively. 

The exponents of the simple Lie algebras are listed in the following table: 

Algebra Exponents 

A, 
B, 
C, 
Dl 
G2 
F4 
4 
4 
ES 

1, 2, . . . . I 
1, 3, . . . . 21- 1 
1, 3, . . . . 21- 1 

1, 3, . . . . 21- 3; I- 1 

1, 5 
1, 5, 7, 11 

1, 4, 5, 7, 8, 11 
1, 5, 7, 9, 11, 13, 17 

1, 7, 11, 13, 17, 19, 23, 29 



TODAT~ORYAND W-ALGEBRA 129 

Kac-Moody Algebras. We denote the space of g-valued left-moving currents by 
K. The KM Poisson brackets of the components of J(x) = J”(x) T, are given as 

{J”(x), Jb( y)} ,#= ,” =fZbJ’(x) 6(x’ - y’) + Jcgab X(x’ - y’), (A.8) 

where the f zb are the structure constants, the KM level k is -4rcrc, and Lie algebra 
indices are raised and lowered by using the metric 

gab = Tr( To . Tb )- (A.9) 

APPENDIX B: G, W-ALGEBRA 

In this appendix, as a non-trivial example, we compute the Poisson-bracket 
relations of the w-algebra corresponding to G, explicitly, using the tangential 
Kac-Moody method introduced in Subsection 111.3. 

We will work in the seven dimensional representation of G, and choose the 
following matrix representation for the two simple step operators: 

E%=f!i! !), Eo=fi$ -; il. (B.l) 

Choosing z1 = r2 = 1, the generators of the special sZ(2, R) subalgebra are 

Ip=E;+E;, I+ = lOE, + 6E,, O=fCZ+,Z-I, (J3.2) 

where i is a diagonal matrix with diagonal elements 3, 2, 1, 0, - 1, -2, - 3, respec- 
tively. 

Since there is no “quadratic” gauge for G,, the only distinguished gauge is the 
“highest weight” DS gauge and we will work in this gauge. We denote the two DS 
fields by L and Z, which are the coefficients of $Z+ and the step operator for the 
highest root, respectively: 

J= 

‘03L 0 0 0 z 0 

105L 0 0 0 -z 

0 1 0 3JzL 0 0 0 

OOJZ 0 -3Ji:L 0 0 

00 0 -fi 0 -5L 0 
000 0 -1 0 -3L 

,000 0 0 -1 0 

(B.3) 
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On the other hand, a general Lie algebra element can be parametrized as 

R= 

ffl Al B &C D E 0 

aI H, A, -fiB C 0 -E 

d c 0 -,/2a, -H3 -A, -B 

e 0 -c &b -a2 -H, -A, 

0 -e -d -$c -b -a, -HI 

where H, = H, + H,. 
Now we have to solve the equation 

6J= [R, J] + KR’ 

I , (B.4) 

(B.5) 

for the variations 6L, 6Z parametrizing 6J in terms of the independent parameters 
of R, which are the parameter e and a certain linear combination of a, and a,, 
which correspond to the variations generated by Z and L, respectively. 

Let us discuss the conformal variation first. Using (3.22b), we see that the 
properly normalized conformal generator is 

A=$ 
K . 

The conformal variations, generated by the conformal “charge” 

Qil = lfn dx’ a(x) A(x) 

(through Dirac-brackets) are obtained by solving (B.5) with 

1 
e=O and a,=a,=-a. 

K 

We find 

{A, Q,}* = 6,A = aA’ + 2a’A - 14rca”’ 

{Z, Q,j*=6D:Z=aZ’+6a’Z. 

From (B.9) we see that the central charge of the Virasoro algebra is 

c= -168k 

and that the field Z is a conformal primary field with conformal spin 6. 

(B.6) 

(B.7) 

03.8) 

(B.9) 

(B.lO) 
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The only non-trivial W-transformation is generated by 

Qe = j;’ dx’ e(x) Z(x). 

The corresponding variations can be found by solving (B.5) now with 

e#O and 9a, + 5a2 = 0. 

After a lengthy computation we find 

{Z Q,>* =d,Z 
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(B.ll) 

(B.12) 

1 
=- 

168 
-~lle(ll) + 5 #+ ‘[(eQ2i+ #2i+ 1) + et2’+ ‘)Qzi+ l]}, (B.13) 

i=O 

where 

Q, = -4576L2Z - 7561c’L”Z - 185Orc*L’Z’ - 860~~LZ” - 74~~2”” 

+ 230400L5 + 407392~~L’L” + 1514056~*L~(L’)* + 111956~~L~L”” 

+ 1010254~~LL’L”’ + 797637~~L(L”)* + 1648812~~(L’)* L” + 21196~~LL’~) 

+ 1382Ol~~L’L”“’ + 364431~~L”L”” + ~K~(L”‘)* + 2073~~L(~), 

Q3 = 124OLZ+ 120~~2” - 168608L4 - 184316~~L*L” - 457655~*L(L’)* 

- 3487O~~LL”” - 15752O~~L’L”’ - 124443~~(L”)~ - 34101c6Lc6’, 

QS = -522 + 30580L3 + 17226~~LL” + TK”( L’)’ + 1683~~L”“, 

Q, = -2046L2 - 396~=L”, 

Qg = 55L. 

Note that it is a non-trivial check on our result for 6,Z that it can be written in 
the form (B.13) which follows from the antisymmetry of the (Z, Z} * Dirac-bracket 
hidden in (Z, Q,}*. 

Finally, by introducing an orthonormal basis (H,, H2} in the Cartan subalgebra 
defined by 

CLE:l=$H,, C&,E;l= --$H,+-$H~ (B.14 

and going to the diagonal gauge where 

J=Z- +8,H,+B2H2 (B.15 
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we can easily write down the 7 th-order differential operator discussed in Section V: 

APPENDIX C: EXPLICIT CASIMIR CALCULATIONS 

In this appendix we present the arguments leading to the Poisson brackets (4.21) 
and (4.22). We then use these results to derive explicit formulae for the Poisson 
brackets of the Casimirs C” as defined in (4.17). 

First we need the Poisson brackets of the group invariant objects, Q’, defined in 
(4.18). We observe that due to the invariance of the trace under cyclic permutations 

fobcJaTr(J”TC)=Tr(J”[J, Tb])=Tr(J”+‘Tb-J”T,J)=O, (C.1) 

the Poisson brackets of the Q”‘s are given by 

{Q’(x), Q”(y)} = rcg,, Tr(J”-‘T”)(Tr(J”-‘Tb)(x) 6’+ Tr(J”-‘Tb)’ (x) 6), (C.2) 

where the argument of 6 and 6’ is (x’ - y’). Now by using the identity 

J” = Tr( J”T,) T” + i Qn, 

valid for the A, B, and C series, we find 

g,, Tr(J”T”) Tr(J”Tb) = (n +m)Qn+m -K Q’Qm 

g,b Tr(J”T”) Tr(J”Tb)’ = m(Qn+“‘)’ -T Q”(Qm)‘. 

(C.3) 

Together with (C.2) this leads to the Poisson brackets (4.19). 
Now we are ready to calculate the Poisson brackets for the generating function 

for the A, algebras 

f (p, x) = log det( 1 - pJ(x)). (C-4) 
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By using the power expansion (4.20) and the Poisson brackets (4.19) one arrives at 

+ lc c pnvm 
n,ma2 

((m- l)(Qp-“)‘-KQ.-‘(Q”‘)‘) (x)6, 

(C.5) 

wherep=m+nand q=(n-l)(m-1). 
The sums quadratic in the Q” are readily expressed in terms of f and its 

derivatives and we turn to the more difficult task of expressing the two remaining 
sums linear in the Q’ in terms off: 

In the first sum 

we insert the identity 

and then the remaining sum over p can be written in terms off and its derivatives 
as 

c (p _ 2) p”V”‘QP-2 (C.6) 

In the second non-trivial sum in (C.5) 

c (m- l)j~%~(Qp-‘)‘=~ (pv)“” (QP-2)’ 1 (m- 1)(/~/v)‘“-““2 
Wl+?7=p 

we insert 

and the remaining sum over p can again be written in term off and its derivatives 
as 
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Finally, using (C.6) and (C.7) in (C.5) yields 

((33) 

From this equation one immediately obtains the Poisson brackets (4.21) of the 
generating polynomial A( p, x) = exp( f (p, x)) for the A-series. 

The Poisson brackets for the generating polynomial of the B and C series can be 
calculated in a similar manner. The only difference is that instead of formulae (C.6) 
and (C.7) one needs the identities 

(C-9) 

and 

.;,, (2m-l)y”V”Q2’P-I)=~pv~(p(y)-p(p))+~va”~ (C.10) 
. , P-V 

to derive the Poisson brackets (4.22). (Here g(p, x) = log B( p, x).) 
The Poisson brackets of the generating polynomials contain all information 

about the Casimir algebra. For example, by using the expansion (4.17a) in (4.21) 
one obtains for AI 

(Ck(x), C”(y)} = JCU~(X) &(x1 - y’) + f KU;(X) 6(x’ - y’), k= 1,2, . . . . Z, (C.ll) 

where 

a,=2kB(Z+ 1 -2k)CZkp1+B(k-2)-k 

k-3 

-2O(k-3) c O(Z-i-k)(i+ 1) Ck+iCkpip2, 
i=O 

and by using the expansion (4.17b) in (4.22) one obtains for the B, and C, algebras 

{c”(X), c”(y)} = K&(X) 8(X’ - J”) + f d’;(X) 6(X’ - y’), k = 1,2, . . . . I, (C.12) 
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where 

bk=4(2k- 1)8(1+ 1 -2k)CZkp’-48(k-2) 
k-2 

x 1 fqr-i-k)(2i+ 1) ck+‘F-‘. 
i=O 

In particular, for the highest Casimirs the Poisson brackets simplify to (4.23) and 
(4.24). 
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