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Introduction

Part I
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Semiconductor heterostructures

Semiconductor heterostructure
The Fermi energy in the widegap AlGaAs 
layer is higher than in the narrowgap GaAs 
layer.
Consequently electrons spill over from the n-
AlGaAs leaving behind positively charged 
donors.

This space charge gives rise to an electrostatic 
potential.

At equilibrium the Fermi energy is constant 
everywhere.
The electron density is sharply peaked near the 
AlGaAs-GaAs interface.

Thin conducting layer:
 two-dimensional electron gas (2-DEG)
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Ohmic and ballistic regime

Ohmic and ballistic regime

Drude model

Classical (incoherent) transport

Ohm's law

Scattering mechanisms

Ballistic (coherent) transport

No scaterring effects
Quantized conductance

Phase relaxation length; Momentum relaxation length; Sample length



04.12.2014 6

Landauer-Büttiker approach

Rolf William Landauer
1927-1999

Markus Büttiker
1950-2013

Short historical review

R. Landauer, 
“Spatial variation of currents and fields due to localized scatterers in metallic conduction,” 
IBM J. Res. Develop.1, 223 (1957)

M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, 
“Generalized many-channel conductance formula with application to small rings,” 
Phys. Rev.B 31, 6207 (1985)
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Landauer-Büttiker approach

Contact resistance I.

Macroscopic regime:

A conductor is placed 
between two contacts across 
which an external bias is 
applied.

Ohm's law

Conductivity:

Mesoscopic regime:

We would expect the resistance to become zero.

WRONG!

CORRECT!
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Landauer-Büttiker approach

Contact resistance II.

Experimental observations

Quantized conductance of 
a ballistic conductor.

Number of transverse modes:
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Landauer-Büttiker approach

Landauer formula I.

Reflectionless contacts:
The electrons can enter them from the 
conductor without suffering reflections.

Assuming that M modes carry the current the 
contact resistance (which is the resistance of a 
ballistic waveguide) is given by



04.12.2014 10

Landauer-Büttiker approach

Landauer formula II.
The current that enters the conductor is:

The current which flows out of the conductor is:

The external bias:
T transmission probability

Finally we find the form of conductance

Landauer formula 
(1957)
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Spin-orbit interaction (SOI)

Expansion of the Dirac equation
In this case of an electron which is moving in an external field, the 
Dirac equation may be written as

where

Dirac bispinor:

In the non-relativistic approximation and taking an expansion of the Dirac 
equation up to second order        : 

SPIN-ORBIT INTERACTION TERM
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Spin-orbit interaction in condensed matters

Rashba and Dresselhaus spin-orbit fields I.

Time reversal symmetry:

If the electric field has central symmetry, we can write

and the spin-orbit interaction operator can be expressed in the following form

where the angular momentum operator is L, and the electron spin operator is 
S.

SOI preserves time reversal symmetry!

Space inversion symmetry: Degeneracy!

+

Space inversion asymmetry:
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Spin-orbit interaction in condensed matters

Rashba and Dresselhaus spin-orbit fields II.
Time reversal symmetry ONLY: and

What happens when inversion symmmetry is broken?

Emergence of spin-orbit fields

Bulk inversion asymmetry (BIA) Dresselhaus SO field

Structure inversion asymmetry (SIA) Rashba SO field
(zinc blende semiconductors [GaAs, InAs])

(relevant in 2-DEG)

Rashba Hamiltonian:

Rashba-parameter which can be tuneable by an external gate voltage.

J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett. 78, 1335 (1997).
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Transport in the presence of oscillating SOI

Part II
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Transport in the presence of oscillating SOI

Model of loop geometries

Gray lines correspond to quantum 
wires with oscillating SOI. We 
assume no spin–orbit interaction in 
the input/output leads that are 
indicated by the black arrows.

Series of regular-polygon conductors of 
constant perimeter. Vertices are 
connected by single-channel ballistic 
quantum wires with SO coupling. In the 
limit of infinite number of vertices the 
series converges to a single-channel 
circular conductor. The full dots represent 
the point where input and output leads 
are attached.

D. Bercioux, D. Frustaglia, and M. Governale, 
Phys. Rev. B 72, 113310 (2005).
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Transport in the presence of oscillating SOI

Time-dependent Hamiltonian I.
Floquet-theory

Theorem

The basic solutions to the time-dependent Schrödinger equation with time-
periodic Hamiltonian                              can be given in the form 

where      are the Floquet exponents and             are the time-periodic 
Floquet states, which are solutions to the Floquet-type Schrödinger 
equation  

The      and              are called as quasi-eigenenergies and quasi-
eigenstates.
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Transport in the presence of oscillating SOI

Time-dependent Hamiltonian II.

The relevant time-dependent Hamiltonian:

This Hamiltonian depends on time via the strength of the SOI:

In the following we assume:

Introducing dimensionless units:

Dimensionless time

Dimensionless Hamiltonian

Dimensionless frequency

Schrödinger equation:
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Transport in the presence of oscillating SOI

High harmonics
Jacobi-Anger identity:

Where n is an integer and functions J(z) are the Bessel functions of first 
kind.
Emergence of higher harmonics in time-dependent basis states:

An infinite number of additional ‘Floquet channels’ corresponding to frequencies

open for transmission (with n being an integer).
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Transport in the presence of oscillating SOI

Results I.
The relevant parameters:

Snapshots of the spin direction along a 
quantum wire. Oscillating SOI is present 
in the central region (where the color of 
the wire is gray). The thin black line that 
connects the arrowheads is plotted in 
order to guide the eye.
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Results II.
Transport in the presence of oscillating SOI

The relevant parameters:

Generation of density waves by the oscillating 
SOI in a quantum wire.
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Transport in the presence of oscillating SOI

Results III.

Wavelike propagation of the spin 
direction in the output lead of the 
'triangle' loop.

Relevant parameters:
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Results IV.
Transport in the presence of oscillating SOI

Relevant parameters:

The output corresponding to a 
completely unpolarized Input for the 
'triangle' loop geometry.

The density                   is not 
normalized.
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Transport in the presence of oscillating SOI

Current work
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Summary
Summary

● We investigated spin-dependent quantum transport through 
devices in which the spin–orbit interaction (SOI) is time-
dependent, more precisely, it oscillates.

● We have shown the emergence of electron density and spin 
polarization waves propagating away from their source, i.e. the 
region with oscillating SOI.

● It was demonstrated that simple geometries can produce 
spinpolarized wavepackets even for completely unpolarized input.

● Our model suggests a novel source of spin-polarized electrons 
that can be realized with pure semiconducting materials without 
the use of external magnetic fields.
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Thank you for your attention!
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