Koherencia és kvantum-klasszikus megfeleltetés ultragyors lézer-atom kölcsönhatásban

Ayadi Viktor

MTA Lendület Ultragyors nanooptika kutatócsoport MTA Wigner Fizikai Kutatóközpont

Szeminárium: SZTE Elmélteti Fizikai Tanszék

2016. szeptember 29.

Tartalom

Motivációk

Vizsgált rendszerek

Bidrogén atom fs-os ionizációja szuperpozíciós állapotból

- Módszerek
- Eredmények

- Módszer
- Eredmények

2 Vizsgált rendszerek

Hidrogén atom fs-os ionizációja szuperpozíciós állapotból

- Módszerek
- Eredmények

- Módszer
- Eredmények

A bemutatásra kerülő számításaink fő motivációja, hogy módszereinket tovább szeretnénk fejleszteni plazmonikus nanostruktúrák ultragyors fotoionizációjának vizsgálatának irányába. A jelenségek tanulmányoz általában klasszikus módszereket alkalmaznak, az emissziót leíró szemiklasszikus modelleket leszámítva. leíró szemiklasszikus. Két fontosabb alkalmazást szeretnék megemlíteni.

4 / 38

2 Vizsgált rendszerek

Hidrogén atom fs-os ionizációja szuperpozíciós állapotból

- Módszerek
- Eredmények

- Módszer
- Eredmények

Tanulmányozni kívánt rendszererekben közös

Számolásaink során egy elektron-proton párt leíró időfüggő Schrödinger egyenletet oldottuk meg numerikusan a tömegközépponti koordináták felhasználásával. A teljes rendszer Hamilton operátora a következő alakban írható:

$$\begin{aligned} \hat{H}_{\text{total}} &= \frac{\hat{\mathbf{P}}_{\text{cm}}^2}{2M} + \frac{\hat{\mathbf{P}}^2}{2\mu} + V_{\text{C}}(|\mathbf{R}|) + qF(t)\mathbf{R} \cdot \mathbf{e}_z, \\ F(t) &= E_0 \sin^2(\pi t/\tau) \cos(\omega t + \varphi_{\text{CEP}}) + E_{\text{cor}}, \quad \text{abol} \quad F(t) = -\frac{1}{c} \frac{\partial}{\partial t} A(t) \\ A(t) &= E_0 \sin^2(\pi t/\tau) \sin(\omega t + \varphi_{\text{CEP}}) \end{aligned}$$

a külső gerjesztő elektromos tér és V_C a Coulomb potenciál³. A φ_{CEP} fázist vivőburkoló fázisnak (CEP) szokás nevezni.

³S. Chelkowski, A. D. Bandrauk, A. Apolonski, (Phys. Rev. A 70) (2004) < D > (B > (E > (E > (E > (E > (E > (C > (C

2 Vizsgált rendszerek

Hidrogén atom fs-os ionizációja szuperpozíciós állapotból

- Módszerek
- Eredmények

- Módszer
- Eredmények

2 Vizsgált rendszerek

Hidrogén atom *fs*-os ionizációja szuperpozíciós állapotból Módszerek

• Eredmények

- Módszer
- Eredmények

Modell

Polárkoordinátákban a relatív mozgást leíró időfüggő Schrödinger egyenlet (**TDSE**) a következő alakot ölti:

$$\frac{\partial \psi}{\partial t} = \left[-\frac{\Delta}{2} - \frac{1}{r} - F(t)r\cos(\theta) \right] \psi_{t}$$

ahol a kifejezés atomi egységekben értendő. z-tengely körüli forgásszimmetria \Rightarrow a probléma lényegében kétdimenziós.

A hullámfüggvény kifejtése

A hullámfüggvényt kifejtettük a gömbi harmonikusokkal

$$\psi(r,\theta,\phi,t) = \sum_{l=0}^{L_{\max}} \frac{\Phi_l(r,t)}{r} Y_l^0(\theta,\phi).$$
$$i\frac{\partial}{\partial t}\hat{\psi}(\mathbf{r},t) = \left[\hat{H}_0 + \hat{H}_l(t)\right] \hat{\psi}(\mathbf{r},t), \quad \text{abol} \quad \psi =$$
$$\hat{H}_0 \Phi_l(r,t) = \left[-\frac{1}{2}\left(\frac{\partial^2}{\partial r^2} - \frac{l(l+1)}{r^2}\right) - \frac{1}{r}\right] \Phi_l(r,t).$$

 $\frac{\hat{\psi}}{r}$

t).

 $\hat{H}_I = -F(t)r\cos\theta$

<u>ଚ</u> ବ୍ (ବ 9 / 38 A gömbi harmonikusok szerinti kifejtés azért előnyös, mert a kölcsönhatási tag mátrixelemei könnyen számolhatók:

$$c_l = \langle Y_l^0 | \cos \theta | Y_{l+1}^0 \rangle = \sqrt{\frac{(l+1)(l+1)}{(2l+1)(2l+3)}}.$$

Numerikus módszerek

Az időfüggő Schrödinger egyenlet megoldásához az Alternating Direction Implicit (ADI) módszert használtuk fel⁴, mellyel az időfejlődés egy 2τ nagyságú lépése az

$$\left[1+\mathrm{i}\tau\hat{H}_{I}\right]^{-1}\left[1+\mathrm{i}\tau\hat{H}_{0}\right]^{-1}\left[1-\mathrm{i}\tau\hat{H}_{0}\right]\left[1-\mathrm{i}\tau\hat{H}_{I}\right]$$

kifejezéssel közelíthető.

A számításoknál egyszerűsíthetőek \hat{H}_0 és \hat{H}_l konkrét alakjának felhasználásával. A megvalósítandó algoritmusok átírhatók alkalmas módon tridiagonális mátrixokkal valósíthatóak meg. (Itt \hat{H}_0 a perturbálatlan Hamilton operátor)

$$\begin{bmatrix} 1 + i\tau \hat{H}_0 \end{bmatrix}^{-1} \begin{bmatrix} 1 - i\tau \hat{H}_0 \end{bmatrix} = \begin{bmatrix} 1 + i\tau (M_2^{-1}\Delta_2 + V) \end{bmatrix}^{-1} \begin{bmatrix} 1 - i\tau (M_2^{-1}\Delta_2 + V) \end{bmatrix}$$

= $[M_2 + i\tau (\Delta_2 + M_2 V)]^{-1} [M_2 - i\tau (\Delta_2 + M_2 V)]$

A számításainkat 1000 atomi egység sugarú ($\approx 500 \,\mathrm{nm}$) tartományon végeztük el 10000 pontból álló egyenlő lépésközű rács, és $L_{\mathrm{max}} = 100$ választás mellet.

Észrevétel

Míg \hat{H}_0 *l*-ben "diagonális", addig \hat{H}_l *r*-ben

・ロン ・回と ・ヨン ・ヨン

⁴H. G. Muller, Laser Physics, **9** (1999)

2 Vizsgált rendszerek

3 Hidrogén atom *fs*-os ionizációja szuperpozíciós állapotból

- Módszerek
- Eredmények

- Módszer
- Eredmények

A következő diákon található eredményekhez $\lambda = 800 nm$ hullámhosszú, 4 fs intenzitás félértékszélességű (FWHM) $E_0 = 2.5 \ GV/m$ csúcsintenzitású lézerimpulzust tekintettünk.

Kezdőállapotokat pedig az alábbi szuperpozíciós állapotok közül választottunk⁵.

$$\begin{split} \psi_{2s3p}(\mathbf{r},\delta) &= \frac{1}{\sqrt{2}} \left(\phi_{2s}(\mathbf{r}) + \exp(i\delta)\phi_{3p}(\mathbf{r}) \right), \\ \psi_{3s4p}(\mathbf{r},\delta) &= \frac{1}{\sqrt{2}} \left(\phi_{3s}(\mathbf{r}) + \exp(i\delta)\phi_{4p}(\mathbf{r}) \right), \\ \psi_{4s5p}(\mathbf{r},\delta) &= \frac{1}{\sqrt{2}} \left(\phi_{4s}(\mathbf{r}) + \exp(i\delta)\phi_{5p}(\mathbf{r}) \right). \end{split}$$

 $^{^{5}}$ V. Ayadi, M. G. Benedict, P. Dombi and P. Földi, bírálat alatt in Sci. Rep., arXiv: http://arxiv.org/abs/1604.03437. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Xi \rangle \rangle \equiv$

✓) Q (14 / 38

A $\langle \hat{\mathbf{H}}_{\mathbf{0}} \rangle(\mathbf{t})$ időbeli változása a ψ_{2s3p} és ψ_{3s4p} kezdőállapotokra.

A $\langle z \rangle(t)$ időbeli változása a ψ_{2s3p} és ψ_{3s4p} kezdőállapotokra.

イロト イポト イヨト イヨト 二日

a) ψ_{2s3p} , b) ψ_{3s4p} , c) ψ_{4s5p}

A ψ_{2s3p} állapot esetén akár $3 \times -$ ára is növelheti a végső ionizáció mértékét a megfelelően megválasztott kezdőfázis, ellenben a másik két dipól csatolt állapottal.

Ionizációs valószínűség CEP függése az alábbi impulzus hosszakra:

a) 4 fs, b) 6 fs, c) 8 fs, d) 12 fs, e) 16 fs, 22 fs

A ψ_{23} állapot esetén a végső ionizációban, még 22 fs hosszúságú impulzusok esetén is jól mérhető CEP függést tapasztalunk.

17 / 38

Összefoglalás

- Az ionizációs valószínűség érzékeny az állapotok relatív fázisára.
- A legnagyobb amplitúdójú változás akkor tapasztalható, ha szuperpozíciót alkotó közti Bohr frekvencia közel rezonáns a gerjesztő térrel és az átmenet dipól rendben megengedett.
- Szemléletesen: a külső lézertér a dipólmomentum belső oszcillációit gerjesztheti mind konstruktívan mind destruktívan. Nagy elhangolás esetén kiátlagolódás.
- A 2s - 3p állapotok vizsgálata elvben lehetővé teszi akár 22 ${\rm fs}$ hosszú impulzusok CEP-jének mérését is.

2 Vizsgált rendszerek

Hidrogén atom fs-os ionizációja szuperpozíciós állapotból

- Módszerek
- Eredmények

- Módszer
- Eredmények

Mi is a szemiklasszikus Monte Carlo (SCMC) módszer?

- Az elektronok emisszió utáni kezdeti feltételei és keletkezési valószínűsége, valamilyen kvantum mechanikai közelítésen alapszanak, pl. alagutazás adiabatikus közelítése.
- Klasszikus mozgás egyenletek alapján fejlesztjük a mozgásegyenleteket, hasonlóan a klasszikus trajektóriás Monte Carlo (SCMC) módszerhez⁶.
- Minden pályának figyelembe vesszük a kvantummechanikai fázisát is⁷.
- Szemléletes kép is kapcsolható a folyamatokhoz.

⁶B. Hu, J. Liu, and S. G. Chen, Phys. Lett. A **236**, 533 (1997)

⁷M. Li, et al., Phys Rev Lett. **112**, 113002 (2014)

	TDSE	SCMC
Előnyök:	 pontosság numerikusan egzakt kvantumos számítás 	 alkalmazhatóság nem-triviális geometriákra mérsékelt számítási és memória igény természetes módon adódik a jelenséghez egy klasszikus kép
Hátrányok:	 nehezen alkalmazható nem-triviális geometriákra nagy számítási és memória igény nem tartozik feltétlenül szemléletese klasszikus kép a számoláshoz 	 korlátozott pontosság (tesztek szükségesek)

Kiindulási állapot a Hidrogén alapállapot.

Paraméterek:

 $\lambda = 800$ nm, $\tau = 8 \cdot (2\pi/\omega)$ (7.8*f*s FWHM), $I \simeq 0.9 \cdot 10^{14} W/cm^2$.

A számításokhoz nagyságrendileg 100 millió elektron trajektóriát használunk fel, melyeknek kezdőfeltételeit az alagutazás vizsgálatából nyerjük.

2 Vizsgált rendszerek

Hidrogén atom fs-os ionizációja szuperpozíciós állapotból

- Módszerek
- Eredmények

Kvantumos és Szemiklasszikus Monte Carlo leírás kapcsolata Módszer

Eredmények

Kezdőfeltételek

Minden két-lépcsős szemiklasszikus modellnél szükségünk van az elektron pályák kezdőfeltételeire (kezdő pozíció és kezdősebesség), melyek esetünkben a

$$\left(-\frac{1}{2}\nabla - \frac{1}{r} + Fz\right)\psi = -I_{p}\psi,$$

Schrödinger egyenlet parabolikus tanulmányozásából származtathatók parabolikus koordináták, használata esetén (ilyenkor szeparálhatóvá válik az egyenlet)⁸. Az I_p az ionizációs potenciált jelöli.

Kilépési pont meghatározása (kezdőfeltétel a kiindulási pozícióra):

A szeparáció után az

$$U_2(\eta) = -rac{eta_2}{2\eta} - rac{m^2-1}{8\eta^2} - rac{1}{8}F\eta,$$

effektív potenciál vizsgálatával dönthető el a kilépési pont, melyet a

$$U_2(\eta) = -\frac{I_p}{2}$$

megoldásával kapunk meg, ahol β_2 egy szeparációs konstans és a kilépési távolságra a $z = -\frac{1}{2}\eta$ közelítés alkalmazható. A hidrogén alapállapota esetén $I_p = 1/2$ és $\beta_2 = 1/2$.

⁸L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory. Vol. 3.

Alagutazási valószínűség (kezdőfeltétel a sebességekre):

$$egin{aligned} & \psi(F(t), v_{\perp}) = w_0(F(t)) rac{v_{\perp}}{F(t)\pi} \exp\left(-rac{v_{\perp}^2}{F(t)}
ight) \ & w_0(F(t)) = rac{4}{F(t)} \exp\left(-rac{2}{3F(t)}
ight), \end{aligned}$$

a fenti egyenletek a Landau-Dykhne adiabatikus közelítés alkalmazásával vezethetők le ^{9 10 11}.

Pályák mozgásegyenlete:

$$\ddot{\mathbf{r}} = -\frac{\mathbf{r}}{r^3} - \mathbf{F}(t)$$

25 / 38

⁹M. V. Ammosov, N. B. Delone, and V. P. Krainov, Zh. Eksp. Teor. Fiz. **91**, 2008 (1986)

¹⁰D. B., Delone and V. P. Krainov, J. Opt. Soc. Am. B, **8**, 1207 (1991)

¹¹D. B., Delone and V. P. Krainov, Physics-Uspekhi, 41, 469 (1998)

Motivációk Vizsgált rendszerek Hidrogén atom fs-os ionizációja szuperpozíciós állapotból Kvantumos és Szemiklassz

Pályákhoz rendelt fázis SCMC módszer esetén:

$$\Phi(t_0, v_\perp) = -\int_{t_0}^\infty \left[\frac{v^2(t)}{2} - \frac{2}{r(t)} + I_p\right] dt$$

Melyet a Feynman pályaintegrál¹² legalacsonyabb rendjének figyelembevételével és a hatás integrál valamint az impulzus és koordináta reprezentáció közti áttérés felhasználásával kaphatunk meg.

Végső impulzus eloszlás:

$$Prob(\mathbf{p}) = \left| \sum_{j} \sqrt{w(t_0^j, v_{\perp}^j)} \exp\left[i\Phi(t_0^j, v_{\perp}^j) \right] \right|^2$$

Aszimptotikus impulzusok a Kepler törvények alapján:

$$\mathbf{p} = p \frac{p(\mathbf{L} \times \mathbf{A}) - \mathbf{A}}{1 + p^2 L^2},$$

ahol

$$\frac{p^2}{2} = \frac{p_f^2}{2} - \frac{1}{2} \qquad \mathbf{L} = \mathbf{r}_f \times \mathbf{p}_f \qquad \mathbf{A} = \mathbf{p}_f \times \mathbf{L} - \frac{\mathbf{r}_f}{\mathbf{r}_f} \,.$$

(CTMC módszer esetén: $Prob(\mathbf{p}) = \sum_j w(t_0^j, v_{\perp}^j)$)

¹²Feynman, R. P., Rev. Mod. Phys. 20, 367 (1948)

2 Vizsgált rendszerek

Hidrogén atom fs-os ionizációja szuperpozíciós állapotból

- Módszerek
- Eredmények

- Módszer
- Eredmények

A TDSE és az SCMC módszerrel 8 ciklusú lézerimpulzus esetén, számolt eloszlások jó egyezést mutatnak¹³.

¹³V. Ayadi, P. Dombi, P. Földi, K. Tökési, beküldésre előkészítve: J. Phys. B, arXiv: http://arxiv.org/abs/1604.04507

^{28 / 38}

Impulzus eloszlások 2, és 4 ciklusú lézerimpulzus esetén

Vizsgált tartományok a 8 ciklusú impulzus esetén ($au=8\cdot(2\pi/\omega)$)

Az egyes csúcsokhoz tartozó elektronok keletkezési idő szerinti eloszlása. A z = 0 síkban színátmenettel ábrázoltuk a térerősség időfüggését.

Az egyes csúcsokhoz tartozó elektronok keletkezési távolságának eloszlása.

A különböző csúcsokhoz tartozó elektronok keletkezési transzverzális sebességének eloszlása.

Néhány elektron pálya energiájának, illetve magtól mért távolságának alakulása a +1, +2 tartományokhoz.

Összefoglalás

- SCMC számításaink eredményei jó egyezést mutatnak a TDSE számolásokéival
- Az impulzus eloszlás különböző csúcsaihoz jellegében eltérő pályák tartoznak.
- A későbbiekben tervezem nanostruktúrák modellezését, mind SCMC, mind kvantumos módszerek felhasználásával.

Célok

További számolásokat folytatunk tűszerű nanostruktúrák fotoelektron, illetve HHG spektrumának elméleti meghatározására.

Ezekhez kétféle modellt alkalmazunk:

• 1D TDSE numerikus megoldása

$$\mathrm{i}rac{\partial\Psi}{\partial z}(z,t)=\left[-rac{1}{2}rac{\partial^2}{\partial z^2}+V_\mathrm{m}(z)+V(z,t)
ight]\Psi(z,t)\quad V_\mathrm{m}=-rac{1}{z+lpha}$$

• 3D hengerszimmetrikus szemiklasszikus Monte-Carlo szimuláció FTDT módszerrel meghatározott gerjesztő térben

14

¹⁴M. F. Ciappina, J. A. Pérez-Hernández, T. Shaaran, M. Lewenstein, M. Krüger, and P. Hommelhoff, Phys. Rev. A 89, 013409 (2014)

36 / 38

Publikációk

- P. Földi, I. Márton, N. Német, V. Ayadi, P. Dombi, *Few-cycle plasmon* oscillations controlling photoemission from metal nanoparticles, Apl. Phys. Lett. 106, 013111 (2015)
- I. Márton, V. Ayadi, P. Rácz, T. Stefaniuk, P. Wróbel, P. Földi, P. Dombi, Ultrafast Plasmonic Electron Emission from Ag Nanolayers with Different Roughness, Plasmonics (2015)
- V. Ayadi, M. G. Benedict, P. Dombi and P. Földi, *Atomic coherence effects in few-cycle pulse induced ionization*, bírálat alatt: EPJD, arXiv: http://arxiv.org/abs/1604.03437 (2016).
- V. Ayadi, P. Dombi, P. Földi, K. Tökési, *Correlations between the final momenta of electrons and their initial phase-space distribution during photoionization*, bírálat alatt: J. Phys. B., arXiv: http://arxiv.org/abs/1604.04507 (2016).
- P. Rácz, V. Ayadi, P. Dombi, On the role of rescattering and mirror charge in surface plasmon electron acceleration, beküldés alatt: Appl. Phys. Letters

Köszönet illeti

MTA Wigner FK: Dombi Péter, Rácz Péter, Bódi Balázs, Csajbók Viktória, Mátron István, Nagy Benedek, Bedőházi Zsolt SZTE: Benedict Mihály, Földi Péter ATOMKI: Tőkési Károly

37 / 38

Motivációk Vizsgált rendszerek Hidrogén atom *fs*-os ionizációja szuperpozíciós állapotból Kvantumos és Szemiklasszi

Köszönöm a figyelmet!