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Bevezetés. Kvantum szogvaltozdk, linearis oszcillator.
Regularis fazisoperator, koherens fazisallapotok.

A regularis fazisoperator mint Haar-integral.
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Kvantum szogvaltozok, [Quantum angle-
variables; basic and recent canonical

references. |




, Quantization of complex
el / amplitudes. Number, phase.

Quantization, photon number and phase (?). Dirac (1927). Jordan
(1927). London (1927). Fock (1932). ‘Half- unitarity’ of the
‘exponential phase operator’. [ E* partially isometric, but NOT unitary. ]

Dirac: b, = e_mr/hN%/Z, b, = N%/ze+i0,/h b.b; —b/b, =1
OPERATOR analogon of the polar i - i
decomposition of a complex NUMBER: z=e"Vz'z=[z]e?
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Varré S, The quantum phase of the photon a Haar integral on the Blaschke group. [Seminar 7 of LPHYS-16, 11-15 July 2016, Yerevan, Armenia] p. 4



Refinement of the history: Dirac quoted London’s work (non-existence of quantum angle).
He told Jordan that he used only E*=e?™ | but not w (quantum-angle).

>>As Jordan (1927) noted: ,,Thus, one is not allowed for instance for the action
and angle variables, J and w, respectively, to write Jw-wJ=h/2xi. (5) That it was
possible to derive several correct results from this not-allowed equation (5),
according to a remark by Dirac, is to be understood so that for the derivation
of these results, in fact, instead of (5) only Je2"w-g2miwJ=he2"% (6) has been

used.”’<<
NET—-E"N=E"

>>|n the same year, earlier than Dirac’s mentioned paper appeared, London (1927) published his
study on the angle variables and canonical transformations in quantum mechanics. He proved
that though the ladder operators E and E* have a well-defined matrix representation, they cannot
be expressed as an exponential of the form e'¢, where ¢ would be a hermitian matrix. Dirac (1927)
was aware of this discrepancy, he even quoted London’s paper (see note after the reference to
Dirac’s paper).<<

>>Dirac P AM 1927 The quantum theory of emission and absorption of radiation Proc. Roy. Soc.
A 114, 243-265. On page 245 Dirac wrote , The mathematical development of the theory has been
made possible by the author’s general transformation theory of the quantum matrices.# In the
third footnote on this page: ,+ Roy. Soc. Proc., A, vol.113, p.621 (1927). ... An essentially
equivalent theory was developed by Jordan [Z. f. Physik, vol. 40, p. 809 (1927)]. See also, F.
London, Z. F. Physik, vol. 40, p. 193 (1926).” <<

[ Quotations from our recent paper; S. V., Regular phase operator and SU(1,1) coherent
states of the harmonic oscillator. Physica Scripta 90 (7), 074053 (2015) ]




Selection from earlier references on the quantum action-angle [ number-phase ] variables.

Dirac P A M 1927 The quantum theory of emission and absorption of radiation . Proc. Roy. Soc. A 114, 243-265.

London F 1926 Uber die Jacobischen Transformationen der Quantenmechanik. Zeitschrift fiir Physik 37, 915-925.

London F 1927 Winkelvariable und kanonische Transformationen in der Undulationsmechanik . Zeitschrift fir Physik 40,
193-210.

Jordan P 1927 Uber eine neue Begriindung der Quantenmechanik. Il Zeitschrift fiir Physik 44, 1-25 See page 3. This paper
is a continuation of an earlier paper: Jordan P, Zeitschrift fir Physik 40, 809-838 (1927)

Weyl H 1931 The theory of groups and quantum mechanics Page 36. (Dover Publications, New York, 1931) (Translated
from the second (revised) German edition by Robertson H P)

Susskind L and Glogower J 1964 Quantum mechanical phase and the time operator Physics 1, 49-61.

Carruthers P and Nieto M M 1968 Phase and angle variables in quantum mechanics Rev. Mod. Phys. 40, 411-440
Jackiw R 1968 Minimum uncertainty product, number uncertainty product, and coherent states J. Math. Phys. 9, 339-346
Garrison J C and Wong J 1970 Canonically conjugate pairs, uncertainty relations, and phase

operators J. Math. Phys. 11, 2242-2249

Y. Aharonov, E. C. Lerner, H. W. Huang, and J. M. Knight, Oscillator phase states, thermal equilibrium and group
representations. Journal of Mathematical Physics 14, 746-756 (1973).

Paul H 1974 Phase of a microscopic electromagnetic field and its measurement Fortschritte der Physik 22, 657.

Popov V N and Yarunin V S 1992 Quantum and quasi-classical states of the photon phase operator. Journal of Modern
Optics 39, 1525-1531.

Pegg D T and Barnett S M 1989 Phase properties of the quantized single-mode electromagnetic field Phys. Rev. A 39,
1665-1675.

Schleich W, Horowicz R J and Varrd S 1989 A bifurcation in the phase probability distribution of a highly squeezed state
Phys. Rev. A 40, 7405-7408.

Schleich W P, Dowling J P, Horowicz R J and Varré S , in New Frontiers in Quantum Electrodynamics ed

Barut A O (New York: Plenum, 1990)

Shapiro J H and Shepard S R 1991 Quantum phase measurement:.Phys. Rev. A 43, 3795-3818.

Noh J W, Fougéres A and Mandel L 1992a Operational approach to the phase of a quantum field

Phys. Rev. A 45, 424-442.

Gantsog Ts, Miranowicz A and Tanas 1992 Phase properties of real field states: The Garrison-Wong versus Pegg-Barnett
predictions Phys. Rev. A 46 2870-2876

Schleich W P and Barnett S M 1993 (Editors) Special issue on Quantum phase and phase dependent measurements
Physica Scripta T48

Freyberger M, Heni M and Schleich W P, Two-mode quantum phase. Quantum Semiclass. Opt. 7 (1995) 187-203.




Some related basic mathematical references. Explicitly related works.

Neumark M A, Positive definite operator functions on a commutative group. Bulletin (Izvestiya) Acad. Sci. URSS
(ser. math) 7, 237-244 (1943). Self-adjoint extension of the second kind of a symmetric operator. Ibidem, 4 (1940),
53-104. (in Russian with English summary)

Riesz F and Sz&kefalvi-Nagy B 1965 Lecons d’analyse fonctionelle 4. éd. (Gautier-Villars, Paris

and Akadémia Kiado, Budapest, 1965)

Szdbkefalvi-Nagy B, Sur le contractions de I'espace de Hilbert.Acta Sci. Math. Szeged 15, 87-92 (1953).
,-Extension of linear transformations in Hilbert space which extend beyond this space.” Appendix to F. Riesz and B.
Sz.-Nagy: Functional analysis (Ungar, New York, 1960).

Some explicitly related works.

Perelomov AM 1972 Commun. Math. Phys. 26 222; Perelomov A 1986 Generalized Coherent States and their
Applications (Basel: Springer)

Y. Aharonoy, E. C. Lerner, H. W. Huang, and J. M. Knight, Oscillator phase states, thermal equilibrium and group
representations. Journal of Mathematical Physics 14, 746-756 (1973).

Holevo A S, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982)
Perelomov A 1986 Generalized Coherent States and their Applications (Basel: Springer)

Brif C, Photon states associated with the Holstein-Primakoff realization of the SU(1,l) Lie algebra. Quantum and
Semiclassical Optics 7, 803-834 (1995).

M Rasetti, A fully consistent Lie algebraic representation of quantum phase and number operators. J. Phys. A:
Math. Gen. 37 (2004) L479-1487.

J. Lahti P J and Pellonpa™a™ J P, J. Math. Phys. 40, 4688 (1999)

Busch P, Lahti P, J-P Pellonp™a“a J-P and K Ylinen, J. Phys. A: Math. Gen. 34 (2001) 5923-5935.

Pellonpa™a” J P, On the structure of covariant phase observables. J. Math. Phys. 43, 1299- (2002)

{ [2] Varr6 S, Quantum phase operator and projectors based on SU(1,1) coherent states. Talk 7.3.1. presented at
Seminar 7 of LPHYS’14: Quantum information and quantum computation [23th International Laser Physics
Workshop, 14-18 July 2014, Sofia, Bulgaria }




,Canonical references” in the modern era (from the 60ies of the last century) on the phase
operator in quantum optics. (p.1)

Susskind L and Glogower J 1964 Quantum mechanical phase and the time operator Physics 1, 49-61.
On page 50:

“Ideally we should like to be able to express a* and a- in the form Re* and e** R where R is Hermitian and e* is a
unitary operator defining a Hermitian ¢ . This is what Heitler [2] and Dirac [3] try to do. We shall find, however, that
their arguments are not correct.”

[2] W. HEITLER, Quantum Theory of Radiation Chap. Il. Oxford University Press (1954).
[3] P. DIRAC, Quantum Theory of Emission and Absorption in Quantum Electrodynamics (Edited by J. SCHWINGER) Dover
Publications, New York (1958).”

HHH R R R R R R R R R R T R
Carruthers P and Nieto M M 1968 Phase and angle variables in quantum mechanics Rev. Mod. Phys. 40,
411-440. On page 412:

,» Section 5 discusses the extent to which number and phase variables can be used to describe the quantum
mechanical harmonic oscillator. In this original paper dealing with the quantization of the electromagnetic field,
Dirac'” assumed the existence of an Hermitian operator. As shown in an important paper by Susskind and
Glogower,'8 this assumption leads to contradictions. However, one can describe the phase by means of two well-
defined Hermitian operators C and S, which correspond to cos¢ and sin¢ in the classical limit. It is stressed that the
the absence of a proper phase operator results from the boundedness of the eigenvalue spectrum of the number
operator.”

HHH R R R R R R R R R R R T R

Jackiw R 1968 Minimum uncertainty product, number uncertainty product, and coherent states J. Math.
Phys. 9, 339-346. On page 339 in the Introduction:

“Recent discussions of a qguantum-mechanical phase operator for harmonic oscillators have shown that a
Hermitian phase operator_does not exist.! Susskind and Glogower' (SG) have demonstrated however that
Hermitian sine (S) and cosine (C) operators can be defined which have many properties that are suggested by the
nomenclature. Carruters and Nieto? (CN) have examined the matrix elements of S and C between Glauber’s?
coherent states. They found that in the high-excitation (classical) limit the expectation values of S and C, in these
states, behave as the sine and cosine of the phase of the harmonic oscillaton.”




,Canonical references” in the modern era (from the 60ies of the last century) on the phase
operator in quantum optics. (p.2)

Garrison J C and Wongqg J 1970 Canonically conjugate pairs, uncertainty relations, and phase
operators J. Math. Phys. 11, 2242-2249.

On page 2244, starting section 4. entitled ,,Phase operator”:

It has often been assumed that the annihilation operator for a harmonic oscillator has the representation
3= e—i@ N 1| (4.1) in which the number operator |N | and the phase operator H are self-adjoint.

A formal calculation based on this representation shows that (H, N) is a canonically conjugate pair. This simple
picture was destroyed by Susskind and Glogower,’ who proved that no unitary operator exp(-iH) could satisfy (4.1).
They replaced this incorrect representation by the rigorous polar decomposition

a=(N+1)?E| where Eis defined by Edy=0| . |[E4, =4, 4.2),

and {¢,} is the complete orthonormal set of eigenfunctions of N. Although the relations (4.2) show that E is not
unitary, one can introduce useful self-adjoint operators C and S by

3.

These are the cosine and sine operators introduced by Susskind and Glogower."”

HHH R R R R R R R R R R T R
Y. Aharonov, E. C. Lerner, H. W. Huang, and J. M. Knight 1973, Oscillator phase states, thermal
equilibrium and group representations. Journal of Mathematical Physics 14, 746-756 (1973).
On page 746 the Introduction starts as:

“In studying the quantum theory of harmonic oscillator phase, new hermitian operators C and S were
introduced1-7 whose spectra coincide with the range of valoes of the trigonometric functions cos¢ and
sing. Since these operators do not commute with one another, on cannot prepare a state in which the
phase is arbitrarily sharply defined except in certain limiting cases. However, one might expect that the
operator U=C+iS, which is the quantum analog of the quantity expi¢=cosd+isind, would define states of
maximal phase resolution in come reasonable sense.”

R R R R R R R R B R R R R R R R




F. London (1927): There is no hermitian phase operator; [N,®]=i ‘not good’!
Getting around: ‘Quantum Cosine and Sine’ (Susskind and Glogower (1964))...

S. V., Entangled photon-electron states and the number-phase minimun-uncertainty states of the photon field. New Journal of
Physics 10, 053028 (2011); S. V., Entangled states and entropy remnants of a photon-electron system. Physica Scripta T140,
014038 (2010). Varré S; Intensity effects and absolute phase effects in nonlinear laser-matter interactions; In Laser Pulse
Phenomena and Applications (Ed. Duarte F J); Chapter 12, pp 243-266 . Lecture Notes (in Hung.) Theor. Physics . SZTE (2012).




Garrison and Wong (1970): The solution.

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11, NUMBER 8 AUGUST 1970

Canonically Conjugate Pairs, Uncertainty Relations, and Phase
Operators*

JouN C. GARRISON AND JACK WONG
Lawrence Radiation Laboratory, University of California, Livermore, California 94550

(Received 1 December 1969)

Apparent difficulties that prevent the definition of canonical conjugates for certain observables, e.g.,
the number operator, are eliminated by distinguishing between the Heisenberg and Weyl forms of the
canonical commutation relations (CCR’s). Examples are given for which the uncertainty principle does
not follow from the CCR’s. An operator F is constructed which is canonically conjugate, in the Heisen-
berg sense, to the number operator; and F is used to define a quantum time operator.

1. INTRODUCTION 2. CANONICAL COMMUTATION RELATIONS

A great deal of effort has been expended in the The observables Q and P are said to be canonically
study of canonical commutation relations and the as- conjugate if they satisfy the (abstract) canonical
sociated uncertainty principle. In particular, the commutation relation (CCR)
question of the existence of a phase operator canoni- _
cally conjugate to the number operator has excited [Q, P] =i 2.1)

(f.Peyg)=[, " d&f" ()0 g(e”)]

Garrison J C and Wong J, Canonically conjugate pairs, uncertainty relations, and phase operators. Journal of Mathematical
Physics 11 (8), 2242-2249 (1970).

Oy +27




,Canonical references” in the modern era (from the 60ies of the last century) on the phase
operator in quantum optics. (p.3)

Peqg D T and Barnett S M 1988, Unitary phase operator in quantum mechanics. Europhysics Letters 6(6),
483-487 (1988). The introduction starts as:

“In his original description of the quantized electromagnetic field, Dirac [1] postulated the existence of a
Hermitian operator ¢. This proposed operator would exist in a unitary exponential form expl[if] which,
together with the square root of the number operator N, would appear in a decomposition of the creation
and annihilation operators. However, difficulties have been found with this postulate. The problem of the
multivaluedness was easily overcome [2], but Susskind and Glogower [3] have emphasized the difficulty
in actually finding an exponential phase operator which is unitary. Indeed it has been considered for
some time that such an operator, with all simple and desirable properties that would make it acceptable
as a quantum phase, may not even exist[4].”

HHHHHHH R R R R R R R R R R R
For example: Cibils M B, Cuche Y, Marvulle V and Wreszinski W F 1991, Connection between the Pegg-
Barnett and the Bialynicki-Birula phase operators. Physical Review A 43 (7), 4044-4046.

“Unfortunately, since the original description of the quantized electromagnetic field by Dirac where the
existence of a Hermitian phase operator was postulated,? many difficulties arose with this concept. In
particular, Susskind and Glogower? showed that, in the usual formulation, the phase operator ¢ is not
self-adjoint, or, alternatively, “exp(-i¢)” is not unitary. This proof may also be found in the excellent review

by Carruthers and Nieto:4...”
HHHHHHHHHEHHHHH R A HE

And so on....
HHHHHHHHHHHHHH

We note that all the basic formulae concerning ‘@ and ‘N ‘in a finite-dimensional Hilbert
space (thus, in the present context: the so-called ‘Pegg-Barnett formalism’ ) can be found
in the early work of Weyil:

Weyl H 1931 The theory of groups and guantum mechanics Page 36. (Dover Publications,
New York, 1931) (Translated from the second (revised) German edition by Robertson H P).




Loudon (1973). Pegg and Barnett (1988-89): ‘Phase operator’ in finite dimensional space

PHYSICAL REVIEW A VOLUME 39, NUMBER 4 FEBRUARY 15, 1989

Phase properties of the quantized single-mode electromagnetic field

D. T. Pegg
School of Science, Griffith University, Nathan, Brisbane 4111, Australia

5. M. Barnett
Department of Engineering Science, Oxford University, Parks Road, Oxford, 0X1 3FPJ, England
(Received 12 September 1988}

The usual mathematical model of the single-mode electromagnetic field is the harmonic oscillator
with an infinite-dimensional state space, which unfortunately cannot accommaodate the existence of
a Hermitian phase operator. Recently we indicated that this difficully may be circumvented by us-
ing an alternative, and physically indistinguishable, mathematical model of the single-mode field in-
volving a finite but arbitrarily large state space, the dimension of which is allowed to tend to infinity
afrer physically measurable results, such as expectation values, are calculated. In this paper we in-
vestigate the properties of a Hermitian phase operator which follows directly and uniguely from the
form of the phase states in this space and find them to be well behaved. The phase-number commu-
tator is not subject to the difficulties inherent in Dirac’s original commutator, but still preserves the
commutator—Poisson-bracket correspondence for physical field states. In the quantum regime of
small field strengths, the phase operator predicts phase properties substantially different from those
obtained using the conventional Susskind-Glogower operators. In particular, our results are con-
sistent with the vacuum being a state of random phase and the phases of two vacuum fields being
uncorrelated. For higher-intensity fields, the quantum phase properties agree with those previously
obtained by phenomenclogical and semiclassical approaches, where such approximations are valid.
We illustrate the properties of the phase with a discussion of partial phase states. The Hermitian
phase operator also allows us to construct a unitary number-shift operator and phase-moment gen-
erating functions. We conclude that the alternative marthematical description of the single-mode
field presented here provides a valid, and potentially useful, quantum-mechanical approach for cal-
culating the phase properties of the electromagnetic field.

0) = \/STZn oe"’In ©pg =2 ol Om )om (On |

Loudon R, The Quantum Theory of Light, 1st ed. (Oxford University Press, Oxford, 1973), p. 143. Pegg D T and Barnett S M,
Phase properties of the quantized single-mode electromagnetic field. Physical Review A 39 (4) 1665-1675 (1989).




London’ paper was first mentioned in the ‘modern era’ by Schileich, Horowicz and Varré, (1989).

Pllw )= dopW (x= pcos g,y = psin g;|y))

RAPID
PHYSICAL REVIEW A VOLUME 40, NUMBER 12 DECEMBEI

Rapid Communications

The Rapid Communications section is intended for the accelerated publication of important new results. Since »
submitted 1o this section are given priority treatment both in the editorial office and in production, authors should
their submittal letter why the work justifies this special handling. A Rapid Communication should be no longer than
pages and must be accompanied by an abstract. Page proofs are sent to authors, but, because of the accelerate,
publication is not delayed for receipt of corrections unless requested by the author or noted by the editor.

Bifurcation in the phase probability distribution of a highly squeezed state

W. Schleich,* R. J. Horowicz, and S. Varro
Max-Planck-Institut fiir Quantenoptik, Postfach 1513, D-8046 Garching bei Miinchen, West Germany
(Received 2 October 1989)

We calculate the phase distribution of a highly squeezed state using both a definition of a phase
eigenstate and the area-of-overlap principle. This probability curve undergoes a transition from a
single- to a double-peaked distribution when we decrease the product of squeeze and displacement
parameters.

Wolfzang P. Schleich

Quantum Optics
in Phase Space




Classical phase-locking of the higher-harmonic components stemming from an interaction
of a very high-intensity laser with an atomic jet. [ e.g. a la Gy. Farkas & Cs. Téth (1992) ]
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Scattering of a p-polarized wave on graphene. Generation of an optical Rademacher system.

L L " L
8 10 15 20
Time in optical pericds

S. V., Graphene-based carrier-envelope phase difference meter. In AIP Conf. J
Proceedings 1462, 128-131 (2012). Varré S, Generation of rectangular optical waves of et ;
by relativistic clipping. Laser Physics 23 (2013) 056006 (6pp) . 54 2

Time in optical pericds.




Fourier-korrespondencia, regularis
fazisoperator, koherens fazisallapotok.




{

=i

, Classical (2n-periodic) phase

fuction. ‘Saw-tooth’: X, sinkx/k.

D, (ei¢) =@+ Q=

O, =¢ (-T<@p<r)

<1 BT .
= 0, +ﬂ+ZE[(e (¢ ¢o))k — (e (¢ %))k]
k=1

Classical phase fumction
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d () [ radian |
]

w [ radian ]

Varré S, The quantum phase of the photon a Haar integral on the Blaschke group. [Seminar 7 of LPHYS-16, 11-15 July 2016, Yerevan, Armenia] p. 5




, Classical EZn-perlodlc) phase
el / projector.[Cuts an interval.]

e, (¢) = Z—[(e"k'” ~1)e"? — (e ~1)e ]

Classical projector function e, (6)

10—  —

0.8 € (eiw): L O<o<y)
i 4

N 0, (v <o<2rx)

H g cuts the intefval (0,7/4).]
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: rd |
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Phasevariabled [ 2 n ]

Varré S, The quantum phase of the photon a Haar integral on the Blaschke group. [Seminar 7 of LPHYS-16, 11-15 July 2016, Yerevan, Armenia] p. 6




, New phase operator and
el / quantum ‘projector’.

A=FJN+v (=E4JN), v>0 €7 —>F e >F"

(Dgo — (D¢ (F,F +) [Strongly convergent in the domain where
° ° <(N+v)> is finite.] 0o +27
— i : _
:¢O+E+ZE[er koo _ (E+ykerikeo]l | Py, = IWdEW
k=1 Po

o0 i . B
E, =E,(F,F")= Z—zﬁk[(e kv _1)F ke %
k=1

. (e+ikw —1)(|: +)k e+ik(pO ]

[ S. V., Regular phase operator and SU(1,1) coherent states of the
harmonic oscillator. Physica Scripta 90 (7), 074053 (2015) ]

Varré S, The quantum phase of the photon a Haar integral on the Blaschke group. [Seminar 7 of LPHYS-16, 11-15 July 2016, Yerevan, Armenia] p. 7




Convergence in norm. [ v € D(N) for v =2 ]. The two infinite sums in ®
converge strongly. ] Explicit form of the matrix elements of ®.

FX=fY2(N)E* (k=0),

T (N)=

I'(n+1+k) I'(h+v+1)
I'(n+1) I'(n+v+1+Kk)

7, =S
1 | .
- fis s (Ming,r]), rs

.




Definition of the quantum phase probability distribution, and
probability density distribution

Qo+27

| ¢-dITr(5E,)]

(00 +27Z'

[o-Tr(P,)-do

[ S. V., Regular phase operator and SU(1,1) coherent states of the harmonic oscillator. Physica Scripta 90
(7), 074053 (2015) ]




The new phase distribution and the ‘R — function’. [ An analogon of
the well-known Q-function, which is Q(a)=<a| p |a>, with AJo>= o |a>. ]

Qo+27

[o-Tr(pP,)-do

Poisson kernel :

1 R()=(2)4]2)

2
2 1-2rcos(p—0) + 1 R(z) =R, (r,0)

[ S. V., Regular phase operator and SU(1,1) coherent states of the harmonic oscillator. Physica Scripta 90
(7), 074053 (2015) ]
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, Regular phase coherent states,
el / diagonal representation of ®.

F ‘ Z> _ Z‘ Z>, 7eD. §U(1,1) coherent states with Bargmann
index k, where v=2x-1

\z>:(l—| | )2(V+1)Z I'(h+v+1) 1/2z ‘n>
—ol ['(v+1)n!

J‘(Over )Jcompleteness: Hyperbolic Jmeasure:

du(z)|z)(z|=1, du(z) =(@1-|z|*) “dxdy

Blaschke function

Dlagon?) representation: b

Do = — | QD) Dlo(b)(b], €7 =l 1e o
D

[ S. V., Regular phase operator and SU(1,1) coherent states of the
harmonic oscillator. Physica Scripta 90 (7), 074053 (2015) ]

Varré S, The quantum phase of the photon a Haar integral on the Blaschke group. [Seminar 7 of LPHYS-16, 11-15 July 2016, Yerevan, Armenia] p. 8




/ The kernel of the diagonal

weli representation of the new O.

Phasefunction at different action values

[ the classical phase
function is also
shown, for a
comparison: ]

4 da( @)

Phase parameter 8 [ 2 7 ] 0.5 1.0

[ Fig. 2a of S. V, Physica Scripta 90 (7), 074053 (2015) ]

Varré S, The quantum phase of the photon a Haar integral on the Blaschke group. [Seminar 7 of LPHYS-16, 11-15 July 2016, Yerevan, Armenia] p. 9




The group SU(1,1) and the su(1,1) Lie algebra in the Holstein-Primakoff representation.

»The group SU(1,1) consist of all
2 x 2 unimodular matrices leaving
invariant the Hermitian form |z,|?-
|z,]2. Evidently, elements of
SU(1,1) are parametrized with a
pair of complex numbers.” p.67.

K, +K), KZZ%(K+_K—)’ [K_, K, ]=2K,
K_=AJN+v, K, =+/N+vA", Kj=N+x
KoK I2K s 2N

Kg — K —K5 =x(x-1), x=1(v+1)




SU(1,1) coherent states. Generation in the Holstein-Primakoff representation.

Flz)=12|z), zeD.

1/2
‘> (1| |)2(v+1)z{l“(n+v+1)} z”‘n>

'(v+2)n!

K_=AJN+v =F(N +v)
5,8 = exp(&K, —£7K)[0) = (1-| £ )" exp(¢K,,)|0)
= pe'’, ¢ = (tanh p)e'”

K.Y= (- ¢ S zr(””’ﬂ £ n)

T(2x)n!




Scalar product, phase kernel
el / and the Blaschke functions.

|4

-h-18,0) 1]

2 | @1z~ |b?)
‘<Z‘b>‘ - |1—Z*b|2

Blaschke function:

,_p | |[(zeC,a=(b,e)eB:=DxT,b"z=1)
Ba(z) =&

1-b*z  D={zeC:|z<k1} T={zeC:z|=1}

The quantum phase function, i.e. the kernel of the diagonal
representation of our @ (in Heisenberg representation) is nothing
else but the phase of the Blaschke function: i -

P Ba (elt) _ el(p(b,t)

V S, The quantum phase of the photon as a Haar integral on the Blaschke group. Invited Talk S7.3.2
presented at Seminar 7: Quantum information and quantum computation, of LPHYS’16 [25th
International Laser Physics Workshop, 11-15 July 2016., Yerevan, Armenia]
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, Angular dependence of the
wel / |Blaschke function|? at |z|=|b].

|Blaschke function |*; [z| = |b| = 0.65, 0.75, 0.85, 0.95
1.0 7

0.8 F \\ F \\ | [ we have seen that

the scalar products of
two regular phase

, | coherent states are
0.4 | expressed as: ]

0.6 .

| Ba(2z) 2

(z|b)[ = (-1B,(2) )"

! v

0 2 4 6 8 10 12
Angular difference of z and b [ radians]
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International Laser Physics Workshop, 11-15 July 2016., Yerevan, Armenia]
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Plots of angular dependence of the modulus squared of the Blaschke functions.
Modulus squared of the scalar products of two regular phase coherent states.

1Biaschke function |*: z| = bl = 0.65, 0.75, 085, 0.95 Kblz)% v = 0.0; |zl = |b| =065 075 085, 0.95

AN

=)

P T T S R S R S BN . — —
Angular difference of z and b [ radians] Angular difference of z and b [ radians]
KKbiz)% v =2; |zI=|bl=0.65 0.75, 0.85, 0.95

Figure 4. Shows the modulus squared
of the Blaschke function, as a Upper figure: v = 0.1.
function of the angular differrence of Lower figure: v = 2.
and for four different |z|=|b | values.
We have taken |z|=0.65, 0.75, 0.85,
0.95, which correspond to the lowest,
the two middle, and uppermost
curves, respectively.

6 8 10
Angular difference of z and b [ radians]




lllustration of the effect of the
el Blaschke group.

The function decomposition (B,oB_)(z):=B,(B,(z)) induces a
group (B,o) on the parameter set B:=DxT.

a=(b,e")=(b, +ib,,e")eB:=DxT B (z) = e z-D

Figure copied from: Schipp Ferenc, Hyperbolic wavelets. To the memory of Prof.
Matyas Araté. [in Hungarian] Alkalmazott Matematikai Lapok 32, 1-40 (2015).
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Brief summary on the
el / Blaschke group.

The function decomposition (B,0B_)(z):=B,(B,(z)) induces a
group (B,o) on the parameter set B:=DxT. The group action is
defined as B_cB_=B,___.. The (B,0) is isomorphic with ({B_,acB},0).

a = (b’g) = a'l Oa2 b _ b]_gz +b2 — B(—b 1) (blg;)
- . 1+bbres :

A= (Lbe, &) 19267

e:=(0,1) pog L2700 _p

(—byby &) (82 )

1 s o
1+Db/b,e,

The integral of some function f : B—C with respect to the left

invariant Haar measure m on the group (B,o) is expressed as:

jB Mm@ = %J‘u.“[[) f (b’eit) db,db,dt g=e"

(1-|b]?)* b=Db, +1b,

Varré S, The quantum phase of the photon a Haar integral on the Blaschke group. [Seminar 7 of LPHYS-16, 11-15 July 2016, Yerevan, Armenia] p. 13



Haar Alfréd

[ 1885. Budapest
—1933. Szeged ]




MASSBEGRIFF AUF GRUPPENMANNIGFALTIGEEITEN. 167

Ist f(X) eine beliebige, in der Gruppenmannigfaltigkeit & definierte
reelle oder komplexwertige Funktion von der Beschaffenheit, daf die Integrale

Lf{X)dX und ![;|f(2')|’d1{

existieren, so gilt daher (fiir jedes Gruppenelement 4) die Beziehung

a3) [ raaax = [ rmax, [ ir@xaopax = [1r@mpax;

daher ist die Funktionaloperation 04, die der Funktion f(X) die Funk-
tion f(X A) zuordnet,

04(f(X)) = f(X4)

eine orthogonale lineare Transformation. Fiihrt man in wohlbekannter
Weise auf & ein (vollstindiges) orthogonales Funktionensystem ein, so
gelangt man, indem man die Beziehungen zwischen den Fourierschen
Koeffizienten der Funktionen f(X) und f(X A) aufstellt, zu einem System
von unendlichen orthogonalen Matrizen, das eine lrew isomorphe Darstellung
der vorgelegten Gruppe & lefert.

34. Haar Alfréd, Der Massbegriff in der Theorie der Kontinuierlichen Gruppen. The Annals of Mathematics, Second
Series, Vol.34 No. 1 (Jan., 1933) pp 147 — 169.




Integral representation of the
el / phase operator .

The general left invariant Haar integral on the group (B,0).

j f (a)dm(a) _—j j

B -7 D

f(b,e")

(1~ [b[*)?

db, db, dt

a=(be")=(b, +ib,,e")eB:=DxT

The phase operator can also be expressed as a Haar integral of a

positive operator (from the diagonal repre

f(a):=|b)p(b,t)(b]

q)_ﬂ:LJ'dtJ' dbldb22
< pEA=1b[)

z(b)p(0.t)(b)

p(b,t) is the Poisson
kernel (see figure on
next page)

[ Based on Eq. (5.1) in S. V, Physica Scripta 90 (7), 074053 (2015) ]

Varré S, The quantum phase of the photon a Haar integral on the Blaschke group. [Seminar
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, The phase density function at
el / different excitations

Phase density at different action values ]
0.20 [ Poisson kernel

peaked around /4
for different radial
parameters (action
values, or photon
number expectation
values (in the range
50 <N <1000).]

0.5

-1.0
-0.5 L——\_\

0.0 05 0.0

Fhase parameter d [ 2 & ] 1.0

[ Fig. 2b of S. V, Physica Scripta 90 (7), 074053 (2015) ]
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Heisenberg equation of motion

el / for the physical phase.
do (t N,® ]=i-2xP
17 CT’([)( ) =[®, (1), 7o(N + )] [ 3 7o

[ Note that here N plays the role of the Hamiltonian, and NOT the
role of the Action ‘canonically conjugated’ to the Angle (which is
here the intial value of the phase). ]

®, (t)=d, (0)- a)t+2mjp (r)d7 = @y, (1) + Dy (1)

Dynamical part

Blaschke part

The solution contains a pure Ci(pnter)
decrease —ot (clock-wise 2P (z) = Re 1+ Fe

rotation in phase-space), and Po 1— Fe—i(% +a7)
a Blaschke contribution.

Varré S, The quantum phase of the photon a Haar integral on the Blaschke group. [Seminar 7 of LPHYS-16, 11-15 July 2016, Yerevan, Armenia] p. 16




, Time-evolution of the

{

e / dynamical phase; @,
. ‘Dypar‘nic‘al ph‘ysi‘cal‘ phas‘e at < a‘ﬁa‘> = a‘rbi‘tra‘ry‘ . [This is the simple
| function —ot . ]
ol N
? N
T -8 :
= NV
10 ]
15, ‘ R . &
-5 0 5 10 15

Scaled Time [ radians]

{ Varrd S, Invited talk at: 4th Work Meeting on Quantum Optics & Information [Regional
Centre of the Hungarian Academy of Sciences at Pécs, 6-7 May 2016., Pécs, Hungary] }
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, Time-evolution of the Blaschke
el / part of the physical phase.

| Timg—gvolu;ion qf the angle‘at‘ < a*a > = 100

g 10 : 1 [ This figure shows

E ~ the time dependence
5 | J ' of the expectation

2 5 [ +value of @, (0) in a
5 | phase coherent

s >,

s y state, |C>. ]

s [

i y ‘_J ]

-5 0 5 10 15
Scaled Time [ radians]

{ Varrd S, Invited talk at: 4th Work Meeting on Quantum Optics & Information [Regional
Centre of the Hungarian Academy of Sciences at Pécs, 6-7 May 2016., Pécs, Hungary] }
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{

, Summary of the time evolution

el / of the physical phase.

10

‘Tir‘ne | e\(olutiqn ‘of ;hg phas‘es‘ at < a‘a > = 2Q0 |

3 Unbounded

~_ I~

Dy (t)=D, .. (0)-D, (0)

(D, ()= 0y () + D5 (1)

N N

_10-

angle, dynamica) and physical phase
o

_15;\ I I I I I I I I |

\ Sum: Periodic

chyn (t) — (D(po (O) — ot
] Unbounded

-5 0 5
Scaled Time [ radians]

10 15

V S, The quantum phase of the photon as a Haar integral on the Blaschke group. Invited
Talk S7.3.2 presented at Seminar 7: Quantum information and quantum computation, of
LPHYS'16 [25th International Laser Physics Workshop, 11-15 July 2016., Yerevan, Armenia]
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=i

- Summary of the time evolution
of the physical phase.

/

TII'HE evcrlutlcrn r:-f the DIIEEEE at < a ax= 1[]

T

=r Unbounded

f @ (t) @, ,,(0)—, (0)
J_\{\ i q)(ﬂo(t):q)dyn(t)'l‘q)B(t)

T

T —40[

angla, dynamical, and physical phase
I
Lhn =
%H_ P

_15[,

Y e Sum: Periodic

o

chyn (t) — (D(po (O) — ot
TR . Unbounded

0 5 10 15

Scaled Time [ radians ]

V S, The quantum phase of the photon as a Haar integral on the Blaschke group. Invited
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LPHYS'16 [25th International Laser Physics Workshop, 11-15 July 2016., Yerevan, Armenia]
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Osszefoglalas.

o Attekintettilk a nemrég altalunk
bevezetett‘'regularis fazisoperator’ és ‘reqularis fazis
koherens allapotok’ (specialis SU(1,1) coherens
allapotok) fobb tulajdonsagait. Megmutattuk, hogy a
fazis operator a Blaschke-csoporton vett Haar-

integral. Bebizonyitottuk, hogy a teljes fizikai fazis
periddikus.
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To ‘Canonical references’.




Carruthers P and Nieto M M (1968): ,,Various pitfalls associated with the periodicity problem
are avoided by employing periodic variables (sin ¢ and cos ¢) to describe the phase variable.”

REVIEWS OF MODERN PHYSICS VOLUME 40, NUMBER 2 APRIL 1968

Phase and Angle Variables in Quantum

Mechanics®

P. CARRUTHERS

Laboratory of Nuclear Studies and Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York
MICHAEL MARTIN NIETO

Institute for Theoretical Physics, State Universily of New York at Stony Brook, Stony Brook, New York

The quantum-mechanical description of phase and angle variables is reviewed, with emphasis on the proper mathe-
matical description of these coordinates. The relations among the operators and state vectors under consideration are
clarified in the context of the Heisenberg uncertainty relations. The familiar case of the azimuthal angle variable ¢ and its
“conjugate’” angular momentum L, is discussed, Various pitfalls associated with the periodicity problem are avoided by
employing periodic variables (sin ¢ and cos ¢) to describe the phase variable. Well-defined uncertainty relations are de-
rived and discussed, A detailed analysis of the three-dimensional harmonic oscillator excited in coherent states is given.
A detailed analysis of the simple harmonic oscillator is given. The usual assumption that a (Hermitian) phase operator ¢
(conjugate to the number operator N) exists is shown to be erroneous. However, cosine and sine operators C and .5 exist
and are the appropriate phase variables. A Poisson bracket argument using action-angle (rather J, cos ¢, sin ¢) variables
is used to deduce C and S. The spectra and cigenfunctions of these operators are investigated, along with the important
“phase-difference” periodic variables. The properties of the oscillator variables in the various types of states are analyzed
with special attention to the uncertainty relations and the transition to the classical limit, The utility of coherent states
as a basis for the description of the evolution of the density matrix is emphasized. In this basis it is easy to identify the
classical Liouville equation in action-angle variables along with quantum-mechanical “corrections.” Mention is made of
possible physical applications to superfluid systems.

(AN)?(AC)? > <S >? (AN)?(AS)? > <C >?

Carruthers P and Nieto M M, Phase and angle variables in quantum mechanics . Reviews of Modern Physics 40 (2), 411-440 (1968).




Canonical commutation relation for number and phase.

S(N)={feH?:>” n°|f,[°<o}

7 (N):0=f(-1)= Z}io (=1)" fn}

h,(z)=1+ ()™M e

M, F) = fo+ (=)™ f, =0— f =0

dé .  dh dé( d
(910w NI = [ 279°0 ( 9

o _ th=i(g.h
do {2x idé?j '(g.h)

»Since Z7(N) is dense in H?, we can conclude that [ ®g,,, N ]h = ih,
forany h € . Thus (®,N) is a Heisenberg pair.”

Garrison J C and Wong J, Canonically conjugate pairs, uncertainty relations, and phase operators. Journal of Mathematical
Physics 11 (8), 2242-2249 (1970).




Gantsog, Miranowicz, Tanas (1992): ,,There is, however, one important qualitative difference
between the GW and PB formalism. The GW formalism introduces an anisotropy in to the
phase distribution, and even the vacuum is anisotropic. This anisotropy is a consequence of
their requirement that the number-phase commutator should be -i, i.e., the requirement
that the number-phase operators are a Heisenberg pair.”

PHYSICAL REVIEW A VOLUME 46, NUMBER 5 1 SEPFTEMBER 1992

Phase properties of real field states:
The Garrison-Wong versus Pegg-Barnett predictions

Ts. Gantsog*
International Centre for Theoretical Physics, P.Q. Boz 586, Miramare, 54100 Trieste, Haly

A, Miranowicz and R. Tanag
Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, 60-780 Poznas, Poland
(Received 24 March 1992)

A comparison is made of predictions for the phase variances and the phase distribution functions
obtained from the Garrison-Wong and Pegg-Barnett formalisms for real field states that include
number states, coherent states, and squeezed vacuum states. It is shown that both approaches lead
to qualitatively different phase distributions. The Garrison-Wong approach predicts an anisotropy
of the phase distribution that is inconsistent with the symmetry of the Wigner and @ functions.

PACS number(s): 42.50.Dv

1. INTRODUCTION glert [17] and Popov and Yarunin [18]. In both the latter

papers one can find statements that the Pegg-Barnett

The problcm of correct definition in quantum theory phase operator is an “approximation” to the Garrison-
of an operator corresponding to the phase of a one-mode  Wong phase operator. Both approaches give the same
quantum field has a long history and has provoked many results for highly excited states, but there are essential
discussions and controversies. There have been numer-  differences for the states with few photons. These dif-

Gantsog Ts, Miranowicz A and Tanas R, Phase properties of real field states: The Garrison-Wong versus Pegg-Barnett predictions.
Physical Review A 46 (5), 2870-2876 (1992).




Gantsog, Miranowicz, Tanas (1992): ,,There is, however, one important qualitative
difference between the GW and PB formalism. The GW formalism introduces an anisotropy
in to the phase distribution, and even the vacuum is anisotropic. This anisotropy is a
consequence of their requirement that the number-phase commutator should be -1, i.e.,
the requirement that the number-phase operators are a Heisenberg pair.”

f(lim ®pg) )= lim (f (D pg))

S—0 S—0

03 02 -01 00 01 02 03

n=2 ]

<) ' ' 2}

FIG. 4. Graphs of the phase distributions Ppg(#) (solid
line) and Pgw(6) (dashed line) for the number states with
n=0,1,2,4 in the rectangular coordinate system. FIG. 5. Same as Fig. 4, but in the polar system.

Gantsog Ts, Miranowicz A and Tanas R, Phase properties of real field states: The Garrison-Wong versus Pegg-Barnett
predictions. Physical Review A 46 (5), 2870-2876 (1992).




