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1. Overview
The conical function is a 2F1-specialization that can be used to
solve the Schrödinger equation for the (reduced) N = 2 case of
the repulsive and attractive nonrelativistic integrable
Calogero-Moser N-particle system. Its relativistic generalization
serves the same purpose for the relativistic version of this
integrable quantum system.
To date, the only way to prove orthogonality and completeness of
the associated relativistic eigenfunction transform involves
scattering theory. We therefore begin by outlining how this works
in the nonrelativistic case.
After summarizing the Hilbert space aspects of the relativistic
conical function, we sketch further features. This includes product
formulas it satisfies, and how it gives rise to an
SL(2,Z)-representation and a solution to quantum KZ equations.
To conclude, we add some remarks on Cherednik’s DAHA in the
A1 setting at issue.
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2. Nonrelativistic 1D potential scattering
We consider Schrödinger operators of the form (~ ≡ 1)

H0 = −d2/dx2, H = −d2/dx2 + V (x),

with V (x) real-valued.
Two ‘position space’ Hilbert spaces occur:

Hs ≡ L2((0,∞),dx), Hd ≡ L2((−∞,∞),dx).

With suitable assumptions on V (x), we recall the connection of
the wave operators

W± = lim
t→±∞

eitHe−itH0 ,

from time-dependent scattering theory with time-independent
scattering theory in terms of (improper) eigenfunctions

HΨ = p2Ψ, p > 0,

with unitary asymptotics.
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2A. Scattering on the half-line
Assume V (x) is smooth on (0,∞), vanishes quickly for x →∞,
and satisfies

V (x)→∞, x → 0, V ′(x) < 0, x > 0.

With Dirichlet b. c. at x = 0, the interacting and free evolutions
exp(−itH) and exp(−itH0) on Hs can be compared via the wave
operators W±. They are unitary, with the scattering encoded in
the (position space) S-operator

S ≡W ∗
+W−.

This can be made more explicit by using the so-called incoming
wave functions

HΨ = p2Ψ, p > 0, Ψ(x ,p) ∼ u(p)eixp − e−ixp, x →∞,

with u(p) =: Ŝs(p) the unitary S-matrix (|Ŝs(p)| = 1).
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The sine transform

(F0f )(x) ≡
√

1
2π

∫ ∞
0

dp
(
eixp − e−ixp)f (p), f ∈ C∞0 ((0,∞)),

diagonalizes H0 on Ĥs ≡ L2((0,∞),dp) (‘momentum space’):

H0F0 = F0p2.

Letting

(F f )(x) ≡
√

1
2π

∫ ∞
0

dp Ψ(x ,p)f (p), f ∈ C∞0 ((0,∞)),

we get more generally a unitary operator from Ĥs to Hs such that

HF = Fp2.

We also have

F = W−F0, FŜ∗ = W+F0, (Ŝf )(p) ≡ Ŝs(p)f (p),

with Ŝ = F∗0 SF0 the momentum space scattering operator.
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2B. Scattering on the line

Assume V (x) is smooth, even, vanishes quickly for |x | → ∞, and
satisfies V ′(x) > 0 for x > 0. Such V have finitely many bound
states, i. e.,

HΨ` = E`Ψ`, E` < 0, Ψ` ∈ Hd = L2(R,dx), ` = 0, . . . ,L− 1.

The wave operators W± exist and are isometric, with range equal
to the orthogonal complement of the bound states. Thus, the
position space S-operator S = W ∗

+W− is unitary.
A corresponding unitary S-matrix

Ŝd (p) ≡
(

t(p) r(p)
r(p) t(p)

)
, p > 0,

on the momentum space Ĥd ≡ L2((0,∞),dp)2 arises as follows.
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Diagonalize H0 and H via eigenfunction transforms

(F(0)f )(x) =
1√
2π

∫ ∞
0

dp
(

Ψ(0)(x ,p)
−Ψ(0)(−x ,p)

)
·
(

f+(p)
f−(p)

)
,

with
H(0)Ψ(0) = p2Ψ(0).

For H0 choose Ψ0(x ,p) = exp(ixp), so F0 amounts to the Fourier
transform, with f̂ ∈ L2(R,dp) yielding (f+, f−) ∈ Ĥd via

f+(p) ≡ f̂ (p), f−(p) ≡ −f̂ (−p), p > 0.

For H choose the incoming wave function Ψ(x ,p):

HΨ = p2Ψ, p > 0, Ψ(x ,p) ∼
{

t(p)eixp, x →∞,
eixp − r(p)e−ixp, x → −∞.

(So Ψ(x ,p)/t(p) is a Jost function.)
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Once more, we get H(0)F(0) = F(0)p2 and

F = W−F0,FŜ∗ = W+F0, (Ŝf )(p) ≡ Ŝd (p)

(
f+(p)
f−(p)

)
,

so that the scattering is encoded in the momentum space
scattering operator

Ŝ = F∗0 SF0.

Hence H is diagonalized as multiplication by
(p2,p2)⊕ (E0, . . . ,EL−1) on Ĥd ⊕ Span(bound states).

N. B. In both cases, the eigenfunction transforms yield a concrete
realization of the spectral theorem. Scattering theory can be
avoided by using the so-called Weyl/Titchmarsh/Kodaira
approaches.
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3. The special potentials at issue

We consider the two potentials on the half-line and the line leading
to the conical function, namely,

Vs(x) ≡ g(g − 1)/ sinh2(x), x ∈ (0,∞), g > 1,

and
Vd (x) ≡ −g(g − 1)/ cosh2(x), x ∈ R, g > 1.

Here, the suffix s stands for ‘same’, and d for ‘different’. These
potentials encode the interaction between two charged particles in
their center-of-mass frame, with repulsion between same charges
and attraction between different charges (as in electrodynamics).
N. B. Vd (x) arises from Vs(x) by the analytic continuations
x → x ± iπ/2.
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3A. The repulsive case

The above incoming wave function Ψ(x ,p) involves the so-called
conical function:

P1/2−g
ip−1/2(cosh x) ≡ (sinh x)g−1/2

2g−1/2Γ(g + 1/2)
ψnr(g; x ,p),

ψnr(g; x ,p) ≡ 2F1((g + ip)/2, (g − ip)/2,g + 1/2;− sinh2(x)).

These functions admit a variety of integral representations.
Probably the simplest is

ψnr(g; x ,p) =
2Γ(2g)

2gΓ(g + ip)Γ(g − ip)

∫ ∞
0

dy
cos(yp)

(cosh y + cosh x)g ,

which entails in particular

ψnr(1; x ,p) = sin(xp)/p sinh x .
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Setting

Ψ(x ,p) ≡ −(2 sinh x)gΓ(g)Γ(g − ip)

Γ(2g)Γ(−ip)
ψnr(g; x ,p)

= − 2(sinh x)gΓ(g)

Γ(−ip)Γ(g + ip)

∫ ∞
0

dy
cos(yp)

(cosh y + cosh x)g ,

yields the announced incoming wave function:

Ψ(x ,p) ∼ u(p)eixp − e−ixp, x →∞,

where
u(p) = − Γ(ip)Γ(g − ip)

Γ(−ip)Γ(g + ip)
.

N. B. For g = 1 this gives the free solution

Ψ(x ,p) = eixp − e−ixp.
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3B. The attractive case

For g ∈ (L,L + 1] there are L bound states

Ψ`(x) = (cosh x)1−gP`(i sinh x),

HΨ` = E`Ψ`, E` = −(g − `− 1)2, ` = 0, . . . ,L− 1,

with P`(t) Gegenbauer polynomials of degree `, satisfying

P`(−t) = (−)`P`(t).

The solution space to HΨ = p2Ψ, p > 0, is spanned by the two
functions

(cosh x)gψnr(g; x ± iπ/2,p).

Therefore the desired incoming wave function Ψ(x ,p) is
characterized by two p-dependent coefficients.
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Specifically, it reads

Ψ(x ,p) =
(2 cosh x)gΓ(g)Γ(g − ip)

2Γ(2g)Γ(−ip) sinh(iπg − πp)

×
∑
δ=+,−

δ exp(δ(iπg − πp)/2)ψnr(g; x + δiπ/2,p)

∼
{

t(p)eixp, x →∞,
eixp − r(p)e−ixp, x → −∞,

with

t(p) =
sinh(πp)

sinh(iπg − πp)
u(p), r(p) =

sinh(iπg)

sinh(iπg − πp)
u(p).

N. B. For g = 1,2,3, . . ., we get r(p) = 0. Moreover, g = 1 yields
the free solution

Ψ(x ,p) = eixp.
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4. The relativistic generalization
The relativistic Calogero-Moser system is encoded in N
commuting Hamiltonians that are A∆Os (analytic difference
operators):

Hk (x) =
∑
|I|=k

∏
m∈I
n 6∈I

f−(xm − xn)e−i~β
∑

m∈I ∂xm
∏
m∈I
n 6∈I

f+(xm − xn),

where k = 1, . . . ,N, β > 0, and

f±(x)2 = sinh(µ(x ± iβg)/2))/ sinh(µx/2).

Physical picture: β = 1/mc and c =light speed;
H = mc2[H1(x) + H1(−x)], P = mc[H1(x)− H1(−x)], and
B = −m

∑N
j=1 xj , are space-time translation and boost generators,

representing the Lie algebra of the Poincaré group in 2D:

[H,P] = 0, [H,B] = i~P, [P,B] = i~c−2H.
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4A. The (reduced) N = 2 repulsive case

To date no general Hilbert space theory for A∆Os exists. Worse
yet, the solutions to a Schrödinger equation of the form

f (x)Ψ(x + is,p) + g(x)Ψ(x − is,p) = 2 cosh(sp)Ψ(x ,p),

with shift parameter s > 0 form an infinite-dimensional vector
space whenever one nonzero solution Ψ(x ,p) exists.
Example: The free case f (x) = g(x) = 1. Just multiply the
obvious solution exp(ixp) by any function m(x ,p) that has
is-periodicity in x to get another solution.
Certain special A∆Os, however, have been promoted to
self-adjoint Hilbert space operators. This hinges on the existence
of special solutions to the Schrödinger equation that give rise to a
unitary eigenfunction transform.
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For the reduced N = 2 case at hand, this transform involves the
relativistic conical function. This conical function generalization
has many distinct integral representations. The integrands are
built from the hyperbolic gamma function G(a+,a−; z), which is a
generalization of the (rational) gamma function Γ(z).
In the present setting, a± can be viewed as length scales:

a+ ≡ 2π/µ, (imaginary period/interaction length),

a− ≡ ~/mc, (shift step size/Compton wave length).

From now on, we use the notation

cδ(z) ≡ cosh(πz/aδ), sδ(z) ≡ sinh(πz/aδ), eδ(z) ≡ eπz/aδ ,

where δ = +,−; also, we define the average

a ≡ (a+ + a−)/2.
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The hyperbolic gamma function G(z) can be defined as the
meromorphic solution to one of the first order A∆Es

G(z + iaδ/2)

G(z − iaδ/2)
= 2c−δ(z), δ = +,−, a+,a− > 0,

which is uniquely determined by requiring G(0) = 1 and
‘minimality’; the second A∆E is then satisfied as well.
In the strip |Im z| < a it has the integral representation

G(z) = exp
(

i
∫ ∞

0

dy
y

( sin 2yz
2 sinh(a+y) sinh(a−y)

− z
a+a−y

))
.

This entails absence of zeros and poles in this strip and the
properties

G(a−,a+; z) = G(a+,a−; z), (modular invariance),

G(−z) = 1/G(z), (reflection equation),

G(z) = G(−z).
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The simplest and most revealing representation of the relativistic
conical function is given by

R(a+,a−,b; x , y) =

√
1

a+a−
G(2ib − ia)

G(ib − ia)2

×
∫
R

dz
∏

δ=+,−

G(z + δ(x − y)/2− ib/2)

G(z + δ(x + y)/2 + ib/2)
.

Here, b and y are the coupling constant and spectral parameter,
related to the previous parameters by

b = βg(= g/mc), y = βp/µ.

From this one reads off evenness in x and y and the properties

R(a−,a+,b; x , y) = R(a+,a−,b; x , y), (modular invariance),

R(a+,a−,b; y , x) = R(a+,a−,b; x , y), (self− duality).
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The R-function is meromorphic for b, x , y ∈ C and
Re a+,Re a− > 0. It satisfies the four A∆Es

Aδ(x)R(x , y) = 2cδ(y)R(x , y), Aδ(y)R(x , y) = 2cδ(x)R(x , y),

Aδ(z) ≡ sδ(z + ib)

sδ(z)
exp(ia−δd/dz) + (z → −z),

where δ = +,−.
The A∆O A+(x) is related to the above (reduced) N = 2
Hamiltonian H by a similarity transformation involving the
generalized Harish-Chandra c-function

c(z) ≡ G(z + ia− ib)/G(z + ia).

Introducing the weight and scattering functions

w(z) ≡ 1/c(z)c(−z), u(z) ≡ −c(z)/c(−z),

(with w(z) having a double zero for z = 0), this relation is given by

H = CstH+(x), H±(z) ≡ w(z)1/2A±(z)w(z)−1/2.
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The function

Ψ(x , y) ≡ − G(ib − ia)

G(2ib − ia)

w(x)1/2

c(−y)
R(x , y),

satisfies H±(x)Ψ(x , y) = 2c±(y)Ψ(x , y) and

Ψ(x , y) ∼ u(y) exp(iπxy/a+a−)− exp(−iπxy/a+a−), x →∞.

Setting

H0,±(x) ≡ exp(ia∓d/dx) + exp(−ia∓d/dx),

Ψ0(x , y) ≡ exp(iπxy/a+a−)− exp(−iπxy/a+a−),

one clearly gets H0,±(x)Ψ0(x , y) = 2c±(y)Ψ0(x , y).
The sine transform F0 with kernel (2a+a−)−1/2Ψ0(x , y) can now
be used to reinterpret the A∆Os H0,±(x) as self-adjoint operators
on Hs = L2((0,∞),dx), namely as pullbacks of the self-adjoint
operators of multiplication by 2c±(y) on Ĥs = L2((0,∞),dy) under
the unitary F0.
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Provided b ∈ [0,2a], the transform F with kernel
(2a+a−)−1/2Ψ(x , y) yields a unitary operator Ĥs → Hs. (It equals
F0 for b = a±.) The A∆Os H±(x) can then be viewed as
commuting self-adjoint operators on Hs, defined by F2c±(·)F∗.
These transforms are related to the wave operators

W± = lim
t→±∞

exp(itHδ) exp(−itH0,δ), δ = +,−,

in the same way as in the nonrelativistic setting.
In particular, the scattering operator on Ĥs is given by

(Ŝf )(y) = Ŝs(y)f (y), Ŝs(y) ≡ u(y),

with
u(y) = −G(y + ia− ib)G(y − ia + ib)

G(y + ia)G(y − ia)
.
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4B. The (reduced) N = 2 attractive case
Reminder:

s+(x) = sinh(πx/a+), a+ = 2π/µ, a− = ~/mc, y = p/mcµ.

The repulsive (same charge) and attractive (different charge)
A∆Os are given by

As(x) ≡ A+(x) =
s+(x + ib)

s+(x)
exp(ia−d/dx) + (x → −x),

Ad (x) ≡ A+(x − ia+/2) =
c+(x + ib)

c+(x)
exp(ia−d/dx) + (x → −x).

Setting

c̃(x) ≡ c(x − ia+/2), w̃(x) ≡ 1/c̃(x)c̃(−x) > 0, ∀x ∈ R,

the corresponding Hamiltonian is

Hd (x) ≡ w̃(x)1/2Ad (x)w̃(x)−1/2.

For b = a− it equals eia−d/dx + e−ia−d/dx .
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N. B. The x-shift R(x − ia+/2, y) entails that modular invariance
and self-duality break down. As a result, Ad (x) has no natural
‘modular partner’, and we might as well trade the spectral variable
y (a position) for p (a momentum). For brevity, we stick to y .
Clearly, we get two distinct eigenfunctions

Ad (x)R(x ± ia+/2, y) = 2c+(y)R(x ± ia+/2, y),

which entails
Hd (x)w̃(x)1/2R(x ± ia+/2, y)

= 2c+(y)w̃(x)1/2R(x ± ia+/2, y).

Snag. These Hd (x)-eigenfunctions remain eigenfunctions when
multiplied by any function m(x , y) that is ia−-periodic in x . There
are no general results ensuring that a particular choice yields a
function Ψ(x , y) that can serve as the kernel of a unitary
eigenfunction transform.
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The linear combination

Ψ(x , y) ≡ G(ib − ia)

G(2ib − ia)

w̃(x)1/2

2s−(ib − y)c(−y)

×
∑
δ=+,−

δe−(δ(ib − y)/2)R(x + δia+/2, y),

has coefficients ensuring unitary asymptotics:

Ψ(x , y) ∼
{

t(y)eiπxy/a+a− , Re x →∞,
eiπxy/a+a− − r(y)e−iπxy/a+a− , Re x → −∞,

with
t(y) ≡ s−(y)

s−(ib − y)
u(y), r(y) ≡ s−(ib)

s−(ib − y)
u(y).

N. B. The triple u, t , r satisfies the Yang-Baxter equations; note
also r = 0 for b = (L + 1)a−, L = 0,1,2, . . ..
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In joint work with S. Haworth we have shown that the transform

(F f )(x) =
1√

2a+a−

∫ ∞
0

dy
(

Ψ(x , y)
−Ψ(−x , y)

)
·
(

f+(y)
f−(y)

)
,

yields a unitary operator

F : Ĥd ≡ L2((0,∞),dy)2 → Hd ≡ L2(R,dx),

provided b ∈ [0,a−]. Also, Ψ(x , y) equals eiπxy/a+a− for b = a−, so
then F amounts to the Fourier transform F0.
For b ∈ (a−,a− + a+/2) the transform is isometric. Its range is the
orthogonal complement of L ≥ 1 bound states

Ψ`(x) =
c+(x)

w̃(x)1/2 Q`(is+(x)), ` = 0, . . . ,L− 1,

with Q`(t) q-Gegenbauer polynomials of degree ` and parity (−)`.
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The transforms F(0) are related to the wave operators W± as
before, and serve to associate a self-adjoint operator on Hd to the
A∆O Hd (x), namely the pullback of multiplication by
(2c+(y),2c+(y)) on Ĥd .
For a fixed b ∈ [0,a− + a+/2), the bound state number L is the
smallest integer such that b ≤ (L + 1)a−. For b > a− we have
Hd Ψ` = E`Ψ`, with

E` = 2c+(i(b − (`+ 1)a−)) ∈ (0,2), ` = 0, . . . ,L− 1.

Setting
ξ ≡ b/a+, ζ ≡ a−/a+,

the following plot can be viewed as a phase diagram. The red line
denotes the transition to the ‘unphysical’ regime (breakdown of
isometry and self-adjointness). On the lines ξ = (L + 1)ζ,
L = 0,1, . . ., the reflection vanishes. Also, sG stands for the
sine-Gordon line ξ = 1/2. The nonrelativistic limit arises by setting
ξ = λζ, λ = g/~ fixed, and letting ζ → 0.

Simon Ruijsenaars (University of Leeds) A relativistic conical function Szeged, 29 March 2017 27 / 35



sG

N=0

N=1

L=0

N=2

L=1L=2

L=5

1 2 3
0

1
2

1

2

3

Ζ

Ξ

Simon Ruijsenaars (University of Leeds) A relativistic conical function Szeged, 29 March 2017 28 / 35



5. Further developments

In this section we sketch issues involving cousins of R(x , y)
defined for b ∈ (0,2a) and x , y > 0, namely

J(x , y) ≡
√

a+a−R(x , y)G(ia− 2ib)
∏

δ=+,−
G(δy − ia + ib),

and the self-dual real-valued function

F(x , y) ≡ G(ia− 2ib)G(ib − ia)w(x)1/2R(x , y)w(y)1/2,

which is related to the incoming wave function Ψ(x , y) by

F(x , y) = u(y)−1/2Ψ(x , y).

Identifying L2((0,∞),dx) and L2((0,∞),dy), we obtain a unitary
and self-adjoint involution I with integral kernel
(2a+a−)−1/2F(x , y).
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5A. Product formulas

In joint work with M. Hallnäs we have shown that the J-function
satisfies the product formulas

J(b; x , v)J(b; y , v) =
1
2

∫ ∞
0

dz w(b; z)J(b; z, v)

∏
δ1,δ2,δ3=+,−

G((δ1x + δ2y + δ3z − ib)/2),

J(b; x , t)J(b; x ,u) =
1
2

G(ia− ib)2
∫ ∞

0
dv w(2a− b; v)J(b; x , v)

×
∏

δ1,δ2,δ3=+,−
G((δ1t + δ2u + δ3v + ib)/2− ia).

These formulas have various spin-offs, including crucial
applications to the N = 3 joint eigenfunctions and limits yielding
novel product formulas for the conical function.
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5B. An SL(2,Z) representation

The reduction approach to the various regimes of the classical
versions of the Calogero-Moser N-particle systems led L. Feher
and C. Klimcik to an SL(2,Z) representation in a self-dual regime
that is closely related to the relativistic hyperbolic regime whose
N = 2 quantum version is at issue here.
We have shown by a direct method that this representation also
holds true for the classical N = 2 hyperbolic relativistic case.
Moreover, up to some unresolved domain issues, this
representation persists at the quantum level.

Specifically, the SL(2,Z) generator
(

0 1
−1 0

)
is represented by

the unitary involution I and the generator
(

1 0
1 1

)
by the

Gaussian unitary G ≡ exp(iπx2/2a+a−). (Crux: the operators
IG∗I and GIG are equal up to an unknown phase.)
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5C. Cherednik’s A1 DAHA: First steps
In the present ‘modular’ setting there are two choices of DAHA,
labeled by δ = +,−. Letting

X ≡ eδ(x), D ≡ exp(ia−δ∂x ),

and (sf )(−x) ≡ f (−x), we can take as Demazure-Lusztig operator

T ≡ eδ(ib) +
sδ(x + ib)

sδ(x)
(s − 1),

and as Dunkl-Cherednik operator Y ≡ sDT .
This entails

(T − eδ(ib))(T + eδ(−ib)) = 1, TY−1T = Y ,

Y−1X−1YXT 2 = eδ(−ia−δ),

as required.
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Moreover, on symmetric (even) functions the operator Y + Y−1

acts as Aδ(x), so it has R(x , y) as eigenfunction with eigenvalue
2cδ(y).
There is no obvious way to similarity transform Y + Y−1 to a
(formally) normal operator on L2(R,dx). We have also been
unable to find a ‘non-symmetric’ eigenfunction of Y + Y−1 whose
symmetric part equals R(x , y).
On the other hand, following van Meer/Stokman (IMRN, 2010), we
can use R(x , y) to construct solutions to a modular version of the
bispectral quantum Knizhnik/Zamolodchikov equations, involving a
matrix

Mδ(x) ≡ 1
sδ(x − ib)

(
−sδ(ib)eδ(x) sδ(x)

sδ(x) −sδ(ib)eδ(−x)

)
,

which satisfies Mδ(x)Mδ(−x) = 12.
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These bispectral quantum KZ equations are given by the system(
0 eδ(−x)

eδ(x) 0

)
Mδ(y)Fδ(x , y) = Fδ(x , y − ia−δ),

and its x ↔ y counterpart.
The solution to these systems is given by the self-dual function
Fδ = (F1,δ,F2,δ), with

F1,δ(x , y) ≡ 1
2sδ(y + ib)

[R(x + ia−δ, y)− eδ(−y − ib)R(x , y)],

F2,δ(x , y) ≡ eδ(−ib)[R(x , y)− F1,δ(x , y)].

This self-duality feature is encoded in the novel identity

sδ(x + ib)R(x + ia−δ, y)− sδ(y + ib)R(x , y + ia−δ)

= sδ(x − y)R(x , y).
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