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Plan for the next hour

● Intro 1:  - Chiral symmetry
- Topologically protected edge state
- Bulk topological invariants

      [Asboth, Palyi, Oroszlany, Short Course on Topological Insulators]

● Intro 2:  - Nonhermitan Hamiltonian
- Decay positon as an observable

[Rudner & Levitov, PRL (2009)]

● Our work:  - Generalizing to periodically driven systems
- Exact results for disorder

[Rakovszky, Asboth, Albert, PRB (2017)]

● Open questons
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Simplest example for topological insulator: 
Su-Schrieffer-Heeger model of polyacetylene

The simpler cousin of Kitaev wire 
Majorana zero modes → Zero-energy edge states
protected, superconductvity → protected, chiral symmetry

Nearest neighbor hopping, no onsite energies



  

Sublattice symmetry = chiral symmetry of the 
Su-Schrieffer-Heeger model

Define sublattice projectors A, B, symmetry operator Γ

No transitons between sites on the same sublattice:



  

Chiral symmetry: 
Eigenstates with E≠-E  equal weight on A, B sublattices
Eigenstates with E=-E  confined to one sublattice

Energy eigenstate on a single 
sublattice

Symmetric spectrum:

Γ gives chiral partner:



  

Bulk sublattice polarizaton predicts number of end states

Bulk: sublattice A shifted 
by ν unit cells

Left end: 
unpaired sites

Right end: 
unpaired sites



  

Bulk sublattice polarizaton = winding number ν

Bulk polarizaton identfied 
with Zak phase:

Projected to a 
single sublattice:

Sublattice 
polarizaton:

Details: Mondragon-Shem et al, PRL 113, 046802 (2014)



  

Edge states on one sublattice pinned  to 0 energy 
by chiral symmetry
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Rudner and Levitov (2009): Nonhermitan SSH, 
sublattice B has decay channels

Nonhermitan Hamiltonian for conditonal tme evoluton. 
Conditon: no decay events. 
Norm of wavefuncton = prob(conditon holds)



  

Rudner and Levitov (2009): Nonhermitan SSH, 
expected displacement untl decay = top. inv.

Insert single partcle 
at m=0, A

When decay happens, collect partcle. Positon of decay=displacement untl decay

topological proof: mapping to a winding number-4     -2      0      2         -2       0       2
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Our questons

● Is Rudner & Levitov result general, or only specific to two-
band model? (Their proof only works for two-band model)

● Is it valid for disordered systems? 
● How to translate this to periodically driven systems? 

pair of winding numbers at E=0, E=π [Asboth & Obuse, PRB (2013)] 

energy → quasienergy E

chiral symmetry → unitary tme reversal



  

1) Do everything for periodically driven systems

2) Recover non-Hermitan Hamiltonians as limitng case



  

Weak measurement on sublattice B at the end of 
each driving cycle



  

Contnue tme evoluton untl partcle is detected



  

Expected displacement Δx = υ  ⟨ ⟩



  

In the disordered case, averaging over inital 
positon is needed:    Δx =υ⟨⟨ ⟩⟩



  

We proved Δx =υ using non-commutatve ⟨⟨ ⟩⟩
geometry formulaton of winding number

Used this before on quantum walk, compared to scattering formulaton of topological 
invariant [Rakovszky & Asboth, PRA (2015)]

Noncommutatve geometry for topological insulators: Lori & Hastngs, Prodan
for chiral symmetric (AIII): Mondragon-Shem et al, PRL (2014)



  

Fast readout can require weak measurement, if 
almost-dark states are present



  

The experiment we proposed was performed in a 
quantum walk with single photons



  

Open questons, related work

● Does something like this work in 3 dimensions?
● Massignan & collaborators have since found similar 

results for Δx  defined for Hermitan Hamiltonians, in ⟨ ⟩
long-tme limit. Precise equivalence? 
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